Skip to main content
Log in

Dynamic mechanical properties of Eucommia ulmoides gum with different degree of cross-linking

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dynamic mechanical properties of Eucommia ulmoides (EU) gum with different degree of cross-linking are studied systematically in this article. EU gum displays five dynamic mechanical behaviors with increasing degree of cross-linking. Before elastic critical turning point, EU gum shows two active dynamic mechanical temperature zones with rising of temperature, one is T g zone, controlled by glass transition mechanism, the other is T m zone, controlled by crystalline melting mechanism, its tan δ values at T g zone and T m zone during the process of cross-linking obey the dynamic reverse transition law: at the T g zone, the peak value of its tan δ is proportional to cross-linking degree inversely proportional to crystallinity degree; at T m zone, its tan δ value is proportional to crystallinity degree and inversely proportional to cross-linking degree. In addition, the T g, T m, and X c of the EU gum with different degrees of cross-linking are obtained as well.

Graphical Abstract

In terms of temperature, the tan δ ~ T curve of EU gum has two active dynamic mechanical temperature zones. One is T g zone controlled by glass transition mechanism; the other is T m zone controlled by crystalline melting mechanism. In terms of cross-linking degree, the tan δ ~ T curve of EU gum displays five dynamic mechanical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan RF (1996) Polymeric materials encyclopedia. In: Salamone JC (ed) Eucommia ulmoides gum, vol 3. CRC Press, Boca Raton, p 2291

    Google Scholar 

  2. Tangpakdee J, Tanaka Y, Shiba KI, Kawahara SC, Sakurai K, Suzuki Y (1997) Structure and biosynthesis of trans-polyisoprene from Eucommia ulmoides. Phytochemistry 45(1):75

    Article  CAS  Google Scholar 

  3. Chaturvedi PN (1992) Multiple melting due to secondary crystallization in polymers. J Mater Sci Lett 11(24):1692

    Article  CAS  Google Scholar 

  4. Cooper W, Vaughan G (1963) Melting transitions in diene polymers. J Polym Sci A 1:159

    Article  Google Scholar 

  5. Kuo CC, Woodword AE (1982) Crystallization of trans-1,4-polyisoprene. J Polym Sci 20(9):1669

    Google Scholar 

  6. Anandakumaran K (1983) Noncrystalline component in dilute-solution-grown crystals of trans-1,4-polyisoprene. Macromolecules 16:563

    Article  CAS  Google Scholar 

  7. Cooper W, Vaughan G (1963) Crystallization of gutta percha and synthetic trans-1,4-polyisoprenes. Polymer 4:329

    Article  CAS  Google Scholar 

  8. Mandelkern L, Quinn F Jr, Roberts AD (1956) Thermodynamics of crystallization in high polymers: gutta percha. J Am Chem Soc 78(5):926

    Article  CAS  Google Scholar 

  9. Su FY, Liu LZ, Zhou EL, Huang JY, Qian RY (1998) High resolution electron microscopy study of single chain single crystals of gutta percha. Polymer 39:5053

    Article  CAS  Google Scholar 

  10. Cerveny S, Zinck P, Terrier M, Arrese-Igor S, Alegria A, Colmenero J (2008) Dynamics of amorphous and semicrystalline 1,4-trans-poly(isoprene) by dielectric spectroscopy. Macromolecules 41(22):8669

    Article  CAS  Google Scholar 

  11. Capps RN, Beumel LL (1990) Sound and vibration damping with polymers. In: Corsaro RD, Sperling LH (eds) ACS symposium series, vol 424, Chap 4. American Chemical Society, Washington, DC, p 632

    Google Scholar 

  12. Thormann E, Evans DR, CraigVincent SJ (2006) Experimental studies of the dynamic mechanical response of a single polymer chain. Macromolecules 39:6180

    Article  CAS  Google Scholar 

  13. Sanchis A, Prolongo MG, Masegosa BM, Rubio RG (1995) Dynamic-mechanical study of the dynamics of polymer blends near the glass transition. Macromolecules 28:2693

    Article  CAS  Google Scholar 

  14. Qian RY, Wu ZC, Xue ZH, Yan RF (1995) Length of chain segment motion needed for crystallization. Macromol Rapid Commun 16:19–22

    Article  Google Scholar 

  15. Zhang XJ, Cheng C, Zhang M, Lan XY, Wang QH, Han SF (2008) Effect of alkali and enzymatic pretreatments of Eucommia ulmoides leaves and barks on the extraction of gutta percha. J Agric Food Chem 56:8936

    Article  CAS  Google Scholar 

  16. Boochathum P, Chiewnawin S (2001) Vulcanization of cis- and trans-polyisoprene and their blends: crystallization characteristics and properties. Eur Polym J 37(3):429

    Article  CAS  Google Scholar 

  17. Boochathum P, Chiewnawin S (2001) Vulcanization of cis- and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Eur Polym J 37(3):417

    Article  CAS  Google Scholar 

  18. Boochathum P (1993) Structure of solution-grown trans-1,4-polyisoprene crystals: 3. Thermodynamic properties of α-TPI crystals. Polymer 34(17):3699

    Article  CAS  Google Scholar 

  19. Pathak A, Saxena V, Tandon P, Gupta VD (2006) Vibrational dynamics of trans-1,4-polyisoprene (β-form). Polymer 47(14):5154

    Article  CAS  Google Scholar 

  20. Barrie JA, Standen J (1967) Thermoelastic measurements on some elastomers. Polymer 8:97

    Article  CAS  Google Scholar 

  21. Mark JE (2003) Some unusual elastomers and experiments on rubberlike elasticity. Prog Polym Sci 28(8):1205

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by grants from the early pre-research of the major basic special research of the Ministry of Science of China (Grant No. 2002CCA03600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarina, Zhang, J. & Zhang, L. Dynamic mechanical properties of Eucommia ulmoides gum with different degree of cross-linking. Polym. Bull. 68, 2021–2032 (2012). https://doi.org/10.1007/s00289-012-0712-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0712-3

Keywords

Navigation