Skip to main content
Log in

Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene-block-poly(styrene-pyrene)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we report the synthesis, properties, and electrical memory characteristics of new diblock copolymers, polystyrene-block-poly(styrene-pyrene) (PS-b-P(St-Py)), prepared by combining atom transfer radical polymerization and Suzuki coupling reaction. The effects of the St–Py block chain length on the electronic energy level, photophysical properties, and memory characteristics were explored. The PS42-b-P(St-Py)108 and PS66-b-P(St-Py)67 devices exhibited a dynamic random access memory characteristics with different turn-on threshold voltages of −2.7 and −3.1 V, respectively. Moreover, these memory devices showed a high ON/OFF current ratio of 109 and were electrically stable for at least 104 s in both ON and OFF states. However, the PS113-b-P(St-Py)45-based device displayed an insulating state in a low current variation of 10−12 to 10−14 A, which had a short St–Py block length. The mechanism of the switching behavior was explained by the charge hopping conduction between the pyrene units with coexisting charge-trapping environment. The volatility of the memory effect was depended on the ability of charge trapping/back transferring of trapped charge. The present study suggested that the electrical memory characteristics could be efficiently tuned through the block ratio between insulating segment and pendant-conjugated segment of the diblock polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452–1463

    Article  CAS  Google Scholar 

  2. Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392:796–798

    Article  CAS  Google Scholar 

  3. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  4. Hagen R, Bieringer T (2001) Photoaddressable polymers for optical data storage. Adv Mater 13:1805–1810

    Article  CAS  Google Scholar 

  5. Möller S, Perlov C, Jackson W, Taussig C, Forrest SR (2003) A polymer/semiconductor write-once read-many-times memory. Nature 426:166–169

    Article  Google Scholar 

  6. Rozenberg MJ, Inoue IH, Sanchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302

    Article  CAS  Google Scholar 

  7. Wang J-P (2005) Magnetic Data Storage Tilting for the top. Nat Mater 4:191–192

    Article  CAS  Google Scholar 

  8. Kapetanakis E, Douvas AM, Velessiotis D, Makarona E, Argitis P, Glezos N, Normand P (2008) Molecular storage elements for proton memory devices. Adv Mater 20:4568–4574

    Article  CAS  Google Scholar 

  9. Ling QD, Liaw DJ, Zhu C, Chan DSH, Kang ET, Neoh KG (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978

    Article  CAS  Google Scholar 

  10. Li H, Xu Q, Li N, Sun R, Ge J, Lu J, Gu H, Yan F (2010) A small-molecule-based ternary data-storage device. J Am Chem Soc 132:5542–5543

    Article  CAS  Google Scholar 

  11. Yang Y, Ouyang J, Ma L, Tseng RJH, Chu CW (2006) Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv Funct Mater 16:1001–1014

    Article  CAS  Google Scholar 

  12. Chen J, Ma D (2005) Single-layer organic memory devices based on N,N′-di(naphthalene-l-yl)-N,N′-diphenyl-benzidine. Appl Phys Lett 87:023505

    Article  Google Scholar 

  13. Lin J, Ma D (2008) The morphology control of pentacene for write-once-read-many-times memory devices. J Appl Phys 103:024507

    Article  Google Scholar 

  14. Tu CH, Lai YS, Kwong DL (2006) Memory effect in the current–voltage characteristic of 8-hydroquinoline aluminum salt films. IEEE Electron Device Lett 27:354–356

    Article  CAS  Google Scholar 

  15. Ouisse T, Stéphan O (2004) Electrical bistability of polyfluorene devices. Org Electron 5:251–256

    Article  CAS  Google Scholar 

  16. Ling QD, Song Y, Lim SL, Teo EYH, Tan YP, Zhu C, Chan DSH, Kwong DL, Kang ET, Neoh KG (2006) A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angew Chem Int Ed 45:2947–2951

    Article  CAS  Google Scholar 

  17. Baek S, Lee D, Kim J, Hong SH, Kim O, Ree M (2007) Novel digital nonvolatile memory devices based on semiconducting polymer thin films. Adv Funct Mater 17:2637–2644

    Article  CAS  Google Scholar 

  18. Kim TW, Oh SH, Choi H, Wang G, Hwang H, Kim D-Y, Lee T (2008) Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices. Appl Phys Lett 92:253308

    Article  Google Scholar 

  19. Lee TJ, Park S, Hahm SG, Kim DM, Kim K, Kim J, Kwon W, Kim Y, Chang T, Ree M (2009) Programmable digital memory characteristics of nanoscale thin films of a fully conjugated polymer. J Phys Chem C 113:3855–3861

    Article  CAS  Google Scholar 

  20. Ling QD, Chang FC, Song Y, Zhu CX, Liaw DJ, Chan DSH, Kang ET, Neoh KG (2006) Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc 128:8732–8733

    Article  CAS  Google Scholar 

  21. Lee TJ, Chang C-W, Hahm SG, Kim K, Park S, Kim DM, Kim J, Kwon W-S, Liou G-S, Ree M (2009) Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 20:135204

    Article  Google Scholar 

  22. You NH, Chueh CC, Liu CL, Ueda M, Chen WC (2009) Synthesis and memory device characteristics of new sulfur donor containing polyimides. Macromolecules 42:4456–4463

    Article  CAS  Google Scholar 

  23. Hahm SG, Choi S, Hong SH, Lee TJ, Park S, Kim DM, Kwon WS, Kim K, Kim O, Ree M (2008) Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv Funct Mater 18:3276–3282

    Article  CAS  Google Scholar 

  24. Hahm SG, Choi S, Hong SH, Lee TJ, Park S, Kim DM, Kim JC, Kwon W, Kim K, Kim MJ, Kim O, Ree M (2009) Electrically bistable nonvolatile switching devices fabricated with a high performance polyimide bearing diphenylcarbamyl moieties. J Mater Chem 19:2207–2214

    Article  CAS  Google Scholar 

  25. Huang CM, Liu YS, Chen CC, Wei KH, Sheu JT (2008) Electrical bistable memory device based on a poly(styrene-b-4-vinylpyridine) nanostructured diblock copolymer thin film. Appl Phys Lett 93:203303

    Article  Google Scholar 

  26. Jian L, Dongge M (2008) Realization of write-once-read-many-times memory devices based on poly(N-vinylcarbazole) by thermally annealing. Appl Phys Lett 93:093505

    Article  Google Scholar 

  27. Lai YS, Tu CH, Kwong DL, Chen JS (2006) Charge-transport characteristics in bistable resistive poly(N-vinylcarbazole) films. IEEE Electron Device Lett 27:451–453

    Article  CAS  Google Scholar 

  28. Lai YS, Tu CH, Kwong DL, Chen JS (2005) Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Appl Phys Lett 87:122101

    Article  Google Scholar 

  29. Ling QD, Lim SL, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG (2006) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Langmuir 23:312–319

    Article  Google Scholar 

  30. Teo EYH, Ling QD, Song Y, Tan YP, Wang W, Kang ET, Chan DSH, Zhu C (2006) Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups. Org Electron 7:173–180

    Article  CAS  Google Scholar 

  31. Ouyang J, Chu CW, Szmanda CR, Ma L, Yang Y (2004) Programmable polymer thin film and non-volatile memory device. Nat Mater 3:918–922

    Article  CAS  Google Scholar 

  32. Tseng RJ, Baker CO, Shedd B, Huang J, Kaner RB, Ouyang J, Yang Y (2007) Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl Phys Lett 90:053101

    Article  Google Scholar 

  33. Lin HT, Pei Z, Chen YJ (2007) Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Device Lett 28:569–571

    Article  CAS  Google Scholar 

  34. Kanwal A, Chhowalla M (2006) Stable, three layered organic memory devices from C60 molecules and insulating polymers. Appl Phys Lett 89:203103

    Article  Google Scholar 

  35. Laiho A, Majumdar HS, Baral JK, Jansson F, Osterbacka R, Ikkala O (2008) Tuning the electrical switching of polymer/fullerene nanocomposite thin film devices by control of morphology. Appl Phys Lett 93:203309

    Article  Google Scholar 

  36. Majumdar HS, Baral JK, Österbacka R, Ikkala O, Stubb H (2005) Fullerene-based bistable devices and associated negative differential resistance effect. Org Electron 6:188–192

    Article  CAS  Google Scholar 

  37. Baral JK, Majumdar HS, Laiho A, Jiang H, Kauppinen EI, Ras RHA, Ruokolainen J, Ikkala O, Osterbacka R (2008) Organic memory using [6, 6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology 19:035203

    Article  Google Scholar 

  38. Lim SL, Ling Q, Teo EYH, Zhu CX, Chan DSH, Kang ET, Neoh KG (2007) Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chem Mater 19:5148–5157

    Article  CAS  Google Scholar 

  39. Fang YK, Liu CL, Chen WC (2011) New random copolymers with pendant carbazole donor and 1,3,4-oxadiazole acceptor for high performance memory device applications. J Mater Chem 21:4778–4786

    Article  CAS  Google Scholar 

  40. Fang YK, Liu CL, Yang GY, Chen PC, Chen WC (2011) New donor-acceptor random copolymers with pendant triphenylamine and 1,3,4-oxadiazole for high performance memory device applications. Macromolecules 44:2604–2612

    Article  CAS  Google Scholar 

  41. Liu CL, Hsu JC, Chen WC, Sugiyama K, Hirao A (2009) Non-volatile memory devices based on poly(styrene) derivatives with electron-donating oligofluorene pendant moieties. ACS Appl Mater Interface 1:1974–1979

    Article  CAS  Google Scholar 

  42. Yun C, You J, Kim J, Huh J, Kim E (2009) Photochromic fluorescence switching from diarylethenes and its applications. J Photochem Photobiol C 10:111–129

    Article  CAS  Google Scholar 

  43. Yoo J, Kwon T, Sarwade BD, Kim Y, Kim E (2007) Multistate fluorescence switching of s-triazine-bridged p-phenylene vinylene polymers. Appl Phys Lett 91:241107

    Article  Google Scholar 

  44. Kim Y, Kim E, Clavier G, Audebert P (2006) New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem Commun 3612–3614

  45. You J, Heo JS, Lee J, Kim HS, Kim HO, Kim E (2009) A fluorescent polymer for patterning of mesenchymal stem cells. Macromolecules 42:3326–3332

    Article  CAS  Google Scholar 

  46. Nagaki A, Takabayashi N, Tomida Y, Yoshida J-I (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5. doi:10.3762/bjoc.5.16

Download references

Acknowledgments

This research work is supported by the National Science Council and the Ministry of Economic Affairs of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Chung Wu or Wen-Chang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, PH., Lee, WY., Wu, WC. et al. Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene-block-poly(styrene-pyrene). Polym. Bull. 69, 29–47 (2012). https://doi.org/10.1007/s00289-011-0686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0686-6

Keywords

Navigation