Skip to main content
Log in

Ring-opening polymerization of (CH3)2Si[CpMo(CO)3]2, a molecule with an –Si(CH3)2– bridge between two cyclopentadienyl ligands

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The (CH3)2Si[CpMo(CO)3]2 complex (1) was synthesized and used to explore ring-opening polymerization (ROP) as a method to prepare high molecular weight polymers containing Mo–Mo bonds along their backbones. Attempts to initiate ROP of 1 using n-BuLi or PtCl2 did not yield any polymers. The X-ray crystal structure of 1 shows that the Si center is not strained, and it is suggested that no ROP occurred because 1 is less strained than other organometallic ROP monomers, such as the silicon-bridged ferrocenophanes. Thermal ROP (TROP) of 1 was successful and yielded a polymer (M w = 210,000 g mol−1) containing both Mo–Mo single bonds and Mo≡Mo triple bonds. When CO(g) is passed over the polymer in the solid state, the Mo≡Mo triple bonds are converted to Mo–Mo single bonds. Attempts to increase the yield of the TROP polymer by increasing the reaction times led to polymer decomposition. The decomposition is likely caused by the weakness of the Mo–Mo bond, cleavage of which causes the polymer to degrade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Tyler DR (2003) Photochemically degradable polymers containing metal–metal bonds along their backbones. Coord Chem Rev 246:291–303

    Article  CAS  Google Scholar 

  2. Shultz GV, Tyler DR (2009) Preparation of functionalized organometallic metal–metal bonded dimers used in the synthesis of photodegradable Polymers. J Inorg Organomet Poly Mater 19:423–435

    Article  CAS  Google Scholar 

  3. Tyler DR (2004) Mechanistic aspects of the effects of stress on the rates of photochemical degradation reactions in polymers. J Macromol Sci Poly Rev 44:351–388

    Article  Google Scholar 

  4. Meyer TJ, Caspar JV (1985) Photochemistry of metal–metal bonds. Chem Rev 85:187–218

    Article  CAS  Google Scholar 

  5. Zemke JM, Daglen BC, Tachiya M, Tyler DR (2011) Applications of the Tachiya fluorescence quenching model to describe the kinetics of solid-state polymer photodegradation. Macromolecules 44:6625–6628

    Article  CAS  Google Scholar 

  6. Daglen BC, Tyler DR (2008) Application of a Perrin-like kinetics model to the photochemical degradation of polymers. Macromolecules 41:9525–9531

    Article  CAS  Google Scholar 

  7. Chen R, Tyler DR (2004) Origin of tensile stress-induced rate increases in the photochemical degradation of polymers. Macromolecules 37:5430–5436

    Article  CAS  Google Scholar 

  8. Chen R, Yoon M, Smalley A, Johnson DC, Tyler DR (2004) Investigation of the origin of tensile stress-induced rate enhancements in the photochemical degradation of polymers. J Am Chem Soc 126:3054–3055

    Article  CAS  Google Scholar 

  9. Daglen BC, Tyler DR (2009) The effect of morphology changes on polymer photodegradation efficiencies: a study of time-dependent morphology and stress-induced crystallinity. J Inorg Organomet Poly Mater 19:91–97

    Article  CAS  Google Scholar 

  10. Daglen BC, Harris JD, Tyler DR (2007) Factors controlling the rate of photodegradation in polymers: the effect of temperature on the photodegradation quantum yield in a PVC polymer containing metal–metal bonds in the polymer chain. J Inorg Organomet Poly Mater 17:267–274

    Article  CAS  Google Scholar 

  11. Amer S, Kramer G, Poe A (1981) Thermal homolytic fission of the molybdenum–molybdenum bond in (η5–C5H5)2Mo2(CO)6. J Organomet Chem 209:C28–C30

    Article  CAS  Google Scholar 

  12. Landrum JT, Hoff CD (1985) The heats of hydrogenation of the metal–metal bonded complexes [M(CO)3C5H5]2 (M = Cr, Mo, W). J Organomet Chem 282:215–224

    Article  CAS  Google Scholar 

  13. Tenhaeff SC, Tyler DR (1991) Photochemically reactive polymers; synthesis and characterization of polyurethanes containing Cp2Mo2(CO)6 or Cp2Fe2(CO)4 molecules along the polymer backbone. Organometallics 10:473–482

    Article  CAS  Google Scholar 

  14. Tenhaeff SC, Tyler DR (1991) Photochemically reactive polymers. Photochemical reactions of polyurethanes containing bis(cyclopentadienylmolybdenum) hexacarbonyl [Cp2Mo2(CO)6] or bis(cyclopentadienyliron) tetracarbonyl [Cp2Fe2(CO)4] molecules along the polymer backbone. Organometallics 10:1116–1123

    Article  CAS  Google Scholar 

  15. Tenhaeff SC, Tyler DR (1992) Photochemically reactive polymers. Synthesis, characterization, and photochemistry of a polyurea containing a Cp2Mo2(CO)6 molecule along the polymer backbone and of poly(ether urethane) copolymers with Cp2Mo2(CO)6 and Cp2Fe2(CO)4 molecules along the polymer backbone. Organometallics 11:1466–1473

    Article  CAS  Google Scholar 

  16. Nieckarz GF, Litty JJ, Tyler DR (1998) Photochemically reactive polymers; the synthesis and photochemistry of amide polymers and model compounds containing metal–metal bonds and internal radical traps. J Organomet Chem 554:19–28

    Article  CAS  Google Scholar 

  17. Chen R, Spence E, Tyler DR (2005) Kinetics of polyurethane formation in polymerization reactions using the organometallic diol (η5-C5H4CH2CH2OH)2Mo2(CO)6. J Inorg Organomet Poly Mater 15:221–230

    Article  CAS  Google Scholar 

  18. Shultz GV, Berryman OB, Zakharov LN, Tyler DR (2008) Preparation of photodegradable oligomers containing metal–metal bonds using ADMET. J Inorg Organomet Poly Mater 18:149–154

    Article  CAS  Google Scholar 

  19. Shultz GV, Zemke JM, Tyler DR (2009) Preparation of photoreactive oligomers by ADMET polymerization of [(C5H4(CH2)8CH=CH2)Mo(CO)3]2. Macromolecules 42:7644–7649

    Article  CAS  Google Scholar 

  20. Brady SE, Shultz GV, Tyler DR (2010) Preparation of polymers containing metal–metal bonds along the backbone using click chemistry. J Inorg Organomet Poly Mater 20:511–518

    Article  CAS  Google Scholar 

  21. Ni Y, Rulkens R, Manners I (1996) Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J Am Chem Soc 118:4102–4114

    Article  CAS  Google Scholar 

  22. Temple K, Massey JA, Chen Z, Vaidya N, Berenbaum A, Foster MD, Manners I (1999) Living anionic ring-opening polymerization of unsymmetrically substituted silicon-bridged [1]ferrocenophanes; a route to organometallic block copolymers with amorphous poly(ferrocenyl silane) blocks. J Inorg Organomet Polym Mater 9:189–198

    Article  CAS  Google Scholar 

  23. Curtis MD, Hay MS (1990) Cyclopentadienyl metal carbonyl dimers of molybdenum and tungsten. Inorg Synth 28:150–154

    Article  CAS  Google Scholar 

  24. Reddy KP, Petersen JL (1989) Synthesis and characterization of binuclear zirconocene complexes linked by a bridge bis(cyclopentadienyl) ligand. Organometallics 8:2107–2113

    Article  CAS  Google Scholar 

  25. Heck J, Kriebisch KA, Mellinghoff H (1988) Cooperative effect in ligand bridged binuclear complexes, VI. Cyclopentadienyl-bridged binuclear complexes Me2Si[(C5H=4)M(CO)3]2 (M = tungsten, molybdenum, chromium) and Me2Si[(C5H4)M(CO)3Cl]2 (M = tungsten, molybdenum): synthesis and NMR spectroscopic characteristics. Chem Ber 121:1753–1757

    Article  CAS  Google Scholar 

  26. Gomez-Elipe P, Resendes R, Macdonald PM, Manners I (1998) Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes: facile molecular weight control and the remarkably convenient synthesis of poly(ferrocenes) with regioregular, comb, star, and block architectures. J Am Chem Soc 120:8348–8356

    Article  CAS  Google Scholar 

  27. Pudelski JK, Foucher DA, Honeyman CH, Macdonald PM, Manners I, Barlow S, O’Hare D (1996) Synthesis, characterization, and properties of high molecular weight poly(methylated ferrocenylsilanes) and their charge transfer polymer salts with tetracyanoethylene. Macromolecules 29:1894–1903

    Article  CAS  Google Scholar 

  28. Wilson FC, Shoemaker DP (1957) Molecular structure of bis-[cyclopentadienylmolybdenumtricarbonyl]. J Chem Phys 27:809–810

    Article  CAS  Google Scholar 

  29. Manners I (2002) Synthetic metal-containing polymers. Wiley, Hoboken, NJ

    Google Scholar 

  30. Abd-El-Aziz AS, Manners I (eds) (2007) Frontiers in transition metal-containing polymers. Wiley, Hoboken, NJ

    Google Scholar 

  31. Foucher DA, Tang BZ, Manners I (1992) Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high-molecular-weight poly(ferrocenylsilanes). J Am Chem Soc 114:6246–6248

    Article  CAS  Google Scholar 

  32. Ma C-CM, Hsia H-C, Chen D-S, Li Y-S, Li M-S (1994) Synthesis and characterization of cryogenic adhesives based on epoxy-modified polyurethane resin systems. Polym Int 35:361–370

    Article  CAS  Google Scholar 

  33. Adams RD, Cotton FA (1973) Structural and dynamic properties of dicyclopentadienylhexacarbonyldimolybdenum in various solvents. Inorg Chim Acta 7:153–156

    Article  CAS  Google Scholar 

  34. Sun XZ, Nikiforov SM, Dedieu A, George MW (2001) Photochemistry of [CpMo(CO)3]2 (Cp = η5-C5H5) and [Cp*Fe(CO)2]2 (Cp* = η5-C5Me5) in supercritical CO2: a fast time-resolved infrared spectroscopic study. Organometallics 20:1515–1520

    Article  CAS  Google Scholar 

  35. Ginley DS, Bock CR, Wrighton MS (1977) Photogeneration of dinuclear metal carbonyls containing a metal–metal triple bond. Inorg Chim Acta 23:85–94

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science Foundation IGERT Fellowship Program under Grant No. DGE-0549503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Tyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, D.M., Brady, S.E., Shultz, G.V. et al. Ring-opening polymerization of (CH3)2Si[CpMo(CO)3]2, a molecule with an –Si(CH3)2– bridge between two cyclopentadienyl ligands. Polym. Bull. 68, 2243–2254 (2012). https://doi.org/10.1007/s00289-011-0681-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0681-y

Keywords

Navigation