Skip to main content
Log in

Preparation and properties of photocurable, high refractive, 2-naphthol epoxy-modified urethane acrylate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The back light unit (BLU) is a core component of liquid crystal displays (LCDs) that are used in notebook computers, mobile phones, navigation devices, flat screen TVs, and public information display (PID) devices, among many others. To enhance the optical efficiency of LCDs, optical films with a high refractive index have been used in the BLU. In particular, high refractive chemicals have been the subject of recent investigations to enhance the optical efficiency of BLUs. In this study, we efficiently synthesized photocurable, high refractive 2-naphthol epoxy-modified urethane acrylate (2-NEUA) from 2-naphthol via a three-step reaction. The refractive index of 2-NEUA was higher than that of 2-naphthol epoxy acrylate (2-NEA), presumably because it contains more integrated aromatic rings and therefore has a higher electron density than 2-NEA. Furthermore, we critically evaluated the effects of 2-NEUA on the mechanical properties of UV curable films in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Joo BY, Shin DH (2010) Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight. Displays 31:87–92

    Article  CAS  Google Scholar 

  2. Kim GH (2005) A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit(BLU). Eur Polym J 41:1729–1737

    Article  CAS  Google Scholar 

  3. Li CJ, Fang YC, Cheng MC (2010) Prism-pattern design of an LCD light guide plate using a neural-network optical model. Opt Int J Light Electron Opt 121:2245–2249

    Article  CAS  Google Scholar 

  4. Je TJ, Park SC, Lee KW, Yoo YE, Choi DS, Whang KH, Kang MC (2009) Machining characteristics of complex prism pattern on electroplated roll by copper. Trans Nonferrous Met Soc China 19:288–294

    Article  Google Scholar 

  5. Kim GH, Kim WJ, Kim SM, Son JG (2005) Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units. Displays 26:37–43

    Article  CAS  Google Scholar 

  6. Kim JS, Kim DS, Kang JJ, Kim JD, Hwang CJ (2010) Replication and comparison of concave and convex microlens arrays of light guide plate for liquid crystal display in injection molding. Polym Eng Sci 50:1696–1704

    Article  CAS  Google Scholar 

  7. Jafri R, Hasan W, Shahzad M (2008) Current trends in electronic display technology. J Inf Commun Tech 2(1):68–75

    Google Scholar 

  8. Tagaya A, Ishii S, Yokoyama K, Higuchi E, Koike Y (2002) The advanced highly scattering optical transmission polymer backlight. Jpn J Appl Phys 41:2241–2248

    Article  CAS  Google Scholar 

  9. Joo BY, Shin DH (2009) Simulations of pixel moirés in the liquid crystal display with image processing technique. Displays 30:190–194

    Article  CAS  Google Scholar 

  10. Park CK, Lee HS, Lee SS (2009) Dual-backlight unit based on a single light source integrated with a beam splitting reflector. Microw Opt Tech Lett 51:1257–1260

    Article  Google Scholar 

  11. Dawson TL (2003) Developments in colour display devices. Rev Prog Color 33:1–14

    Article  CAS  Google Scholar 

  12. Mori K, Tano T (2007) Radiation-curable epoxy resin (math)acrylates and their compositions for optical and electronic parts. Jpn. Kokai Tokkyo Koho, JP 2007056048

  13. You N-H, Suzuki Y, Yorifuji D, Ando S, Ueda M (2008) Synthesis of high refractive index polyimides derived from 1,6-bis(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10-tetrathiaanthracene and aromatic dianhydrides. Macromolecules 41(17):6361–6366

    Article  CAS  Google Scholar 

  14. Gao C, Yang B, Shen J (2000) Study on syntheses and properties of 2,2′-mercaptoethylsulfide dimethacrylate transparent homo- and copolymer resins having high refractive index. J Appl Polym Sci 75(12):1474–1479

    Article  CAS  Google Scholar 

  15. Wang J, Hutchins M, Woo H, Matayabas C, Konish T (2009) Halogen-free, radiation-curable, high refractive index materials. JCT CoatingsTech 6:44–49

    CAS  Google Scholar 

  16. Chattopadhyay DK, Panda SS, Raju KVSN (2005) Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog Org Coat 54:10–19

    Article  CAS  Google Scholar 

  17. Bao F, Shi W (2010) Synthesis and properties of hyperbranched polyurethane acrylate used for UV curing coatings. Prog Org Coat 68:334–339

    Article  CAS  Google Scholar 

  18. Lu WH, Xu WJ, Wu YM, Zhou X, Lu YB, Xiong YQ (2006) Synthesis of dendritic poly(urethane acrylate) used for UV-curable coatings. Prog Org Coat 56:252–255

    Article  CAS  Google Scholar 

  19. Tasic S, Bozic B, Dunjic B (2004) Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-curable coatings. Prog Org Coat 51:321–328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakjune Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.S., Bae, Je., Lee, S. et al. Preparation and properties of photocurable, high refractive, 2-naphthol epoxy-modified urethane acrylate. Polym. Bull. 68, 2097–2105 (2012). https://doi.org/10.1007/s00289-011-0668-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0668-8

Keywords

Navigation