Skip to main content
Log in

Electrical conductivity and optical properties of a new quaternized polysulfone

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Quaternized polysulfone with triphenylphosphonium pendant groups was investigated, as to its optical and electronic properties. Optical properties were analyzed by refractivity and transmission spectra. To obtain the optical parameters, the approach proposed by Tauc for amorphous semiconductors has been used, because of the similarity of the absorption edges. Values of pseudogap energy and Urbach energy of 3.89 eV and 168 meV, respectively, were obtained. The dielectric properties and AC-conductivity were also studied as a function of temperature and frequency. Decrease in the dielectric constant was observed with the increase in frequency and decrease in temperature. Also, quaternized polysulfone films were characterized by two relaxation processes, γ and β relaxation, which appear at different temperatures, depending on the pendant group. The frequency–temperature-dependent conductivity showed that conductivity increases with frequency and also that the quaternized polysulfones possess typical semiconducting properties. All parameters have been found as slightly influenced by the polymer chain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Arthanareeswaran G, Mohan D, Raajenthiren M (2007) Preparation and performance of polysulfone-sulfonated poly(ether ether ketone) blend ultrafiltration membranes. Appl Surface Sci 253:8705–8712. doi:10.1016/j.apsusc.2007.04.053

    Article  CAS  Google Scholar 

  2. Lee ES, Hong SK, Kim YS, Lee JH, Won JC (2008) Preparation and characteristics of cross-linkable polysulfone having methylene methacrylate side-chain. J Appl Polym Sci 109:1–8. doi:10.1002/app.27944

    Article  CAS  Google Scholar 

  3. Stamatialis DF, Papenburg BJ, Girones M, Saiful S, Bettahalli SNM, Schmitmeier S, Wessling M (2008) Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci 308:1–34. doi:10.1016/j.memsci.2007.09.059

    Article  CAS  Google Scholar 

  4. Yang MC, Lin WC (2003) Protein adsorbtion and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polym Adv Technol 14:103–113. doi:10.1002/pat.337

    Article  CAS  Google Scholar 

  5. Raj SA, Rajesh S, Lakshmi K, Shobana KH, Mohan D (2010) Effect of functionalisation on polysulfone-based ultrafiltration membranes. Int J Nucl Desalin 4(1):18–27. doi:10.1504/IJND.2010.033763

    CAS  Google Scholar 

  6. Liu L, Chakma A, Feng X (2004) A new method of preparing ultrathin poly(ether block amide) membranes. J Membr Sci 235:43–52. doi:10.1016/j.memsci.2003.12.025

    Article  CAS  Google Scholar 

  7. Summers GJ, Ndawuni MP, Summers CA (2003) Dipyridyl functionalized polysulfones for membrane production. J Membr Sci 226:21–33. doi:10.1016/j.memsci.2003.08.009

    Article  CAS  Google Scholar 

  8. Wavhal DS, Fisher ER (2002) Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J Membr Sci 209:255–269. doi:10.1016/S0376-7388(02)00352-6

    Article  CAS  Google Scholar 

  9. Song YQ, Sheng J, Wei M, Yuan XB (2000) Surface modification of polysulfone membranes by low-temperature plasma-graft poly(ethylene glycol) onto polysulfone membranes. J Appl Polym Sci 78:979–985. doi:10.1002/1097-4628(20001031)78:5<979:AID-APP60>3.0.CO;2-U

    Article  CAS  Google Scholar 

  10. Blanco JF, Sublet J, Nguyen QT, Schaetzel P (2006) Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J Membr Sci 283:27–37. doi:10.1016/j.memsci.2006.06.011

    Article  CAS  Google Scholar 

  11. Park JY, Acar MH, Akthakul A, Kuhlman W, Mayes AM (2006) Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials 27:856–865. doi:10.1016/j.biomaterials.2005.07.010

    Article  CAS  Google Scholar 

  12. Hancock LF, Fagan SM, Ziolo MS (2000) Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer. Biomaterials 21:725–733. doi:10.1016/S0142-9612(99)00237-9

    Article  CAS  Google Scholar 

  13. Shi Q, Su Y, Zhu S, Li C, Zhao Y, Jiang Z (2007) A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. J Membr Sci 303:204–212. doi:10.1016/j.memsci.2007.07.009

    Article  CAS  Google Scholar 

  14. Higuchi A, Sugiyama K, Yoon BO, Sakurai M, Hara M, Sumita M, Sugawara S, Shirai T (2003) Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. Biomaterials 24:3235–3245. doi:10.1016/S0142-9612(03)00186-8

    Article  CAS  Google Scholar 

  15. Kim YW, Ahn WS, Kim JJ, Kim YH (2005) In situ fabrication of self-transformable and hydrophilic poly(ethylene glycol) derivative-modified polysulfone membranes. Biomaterials 26:2867–2875. doi:10.1016/j.biomaterials.2004.08.026

    Article  CAS  Google Scholar 

  16. Sotiroiu K, Pispas S, Hadjichristidis N (2004) Effect of the end-positioning of a lithium sulfonate group on the aggregation and micellization behaviour of ω-lithium sulfonate polystyrene-block-polyisoprenes. Macromol Chem Phys 205:55–62. doi:10.1002/macp.200300049

    Article  Google Scholar 

  17. Ismail AF, Hafiz WA (2002) Effect of polysulfone concentration on the performance of membrane-assisted lead acid battery. J Sci Technol 24(Suppl.):815–821. ISSN 0125-3395

    Google Scholar 

  18. Savariar S, Underwood GS, Dickinson EM, Schielke PJ, Hay AS (2002) Polysulfone with lower levels of cyclic dimer: use of MALDI-TOF in the study of cyclic oligomers. Desalination 144(1–3):15–20. doi:10.1016/S0011-9164(02)00282-5

    Article  CAS  Google Scholar 

  19. Ydens I, Moins S, Degée P, Dubois P (2005) Solution properties of well-defined 2-(dimethylamino)ethyl methacrylate-based (co)polymers: a viscometric approach. Eur Polym J 41:1502–1509. doi:10.1016/j.eurpolymj.2005.02.002

    Article  CAS  Google Scholar 

  20. Li L, Yan G, Wu J (2009) Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization and their antifouling properties. J Appl Polym Sci 111:1942–1946. doi:10.1002/app.29204

    Article  CAS  Google Scholar 

  21. Popa A, Ilia Gh, Davidescu CM, Iliescu S, Plesu N, Pascariu A, Zhang Z (2006) Wittig-Horner reactions on styrene-divinylbenzene supports with benzaldehyde side-groups. Polym Bull 57:189–197. doi:10.1007/s00289-006-0553-z

    Article  CAS  Google Scholar 

  22. Popa A, Davidescu CM, Trif R, Ilia Gh, Iliescu S, Dehelean Gh (2003) Study of quaternary “onium” salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on “gel-type” styrene-divinylbenzene copolymers. React Funct Polym 55(2):151–158. doi:10.1016/S1381-5148(02)00224-9

    Article  CAS  Google Scholar 

  23. Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5(3):355–365. doi:10.1002/fuce.200400059

    Article  CAS  Google Scholar 

  24. Kreuer KD (2002) On solids with liquid like properties and the challenge to develop new proton-conducting separator materials for intermediate-temperature fuel cells. ChemPhysChem 3(9):771–775. doi:10.1002/1439-7641(20020916)3:9<771:AID-CPHC771>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  25. Paddison SJ, Kreuer KD, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542. doi:10.1039/B611221H

    Article  CAS  Google Scholar 

  26. Lafitte B, Jannasch P (2005) Phosphonation of polysulfones via lithiation and reaction with chlorophosphonic acid esters. J Polym Sci A 43:273–286. doi:10.1002/pola.20487

    Article  CAS  Google Scholar 

  27. Petreus O, Avram E, Serbezeanu D (2010) Synthesis and characterization of phosphorus-containing polysulfone. Polym Eng Sci 50:48–56. doi:10.1002/pen.21508

    Article  CAS  Google Scholar 

  28. Ioan S, Buruiana LI, Petreus O, Avram E, Stoica I, Ioanid GE (2011) Rheological and morphological properties of phosphorus-containing polysulfones. Polym Plast Technol Eng 50:36–46. doi:10.1080/03602559.2010.512346

    Article  CAS  Google Scholar 

  29. Ioan S, Buruiana LI, Avram E, Petreus O, Musteata VE (2011) Optical, dielectric and conduction properties of new phosphorus-modified polysulfones. J Macromol Sci B 50:1571–1590. doi:10.1080/00222348.2010.541848

    CAS  Google Scholar 

  30. Lorenz L (1880) On the refraction constant. Wied Ann Phys 11:70–75

    Google Scholar 

  31. Lorentz HA (1880) On the relationship between the propagation of light and mass density. Wied Ann Phys 4:641–665

    Google Scholar 

  32. Davis EA, Mott NF (1970) Conduction in non-crystalline systems. V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):903–922. doi:10.1080/14786437008221061

    Article  CAS  Google Scholar 

  33. Tauc J, Menth A, Wood DL (1970) Optical and magnetic investigations of the localized states in semiconducting glasses. Phys Rev Lett 25:749–752. doi:10.1103/PhysRevLett.25.749

    Article  CAS  Google Scholar 

  34. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8–10:569–585. doi:10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  35. Jarząbek B, Weszka J, Burian A, Pocztowski G (1996) Optical-properties of amorphous thin-films of the Zn-P system. Thin Solid Films 279:204–208. doi:10.1016/0040-6090(95)08162-3

    Article  Google Scholar 

  36. Jarząbek B, Schab-Balcerzak E, Chamenko T, Sek D, Cisowski J, Volozhin A (2002) Optical properties of new aliphatic-aromatic co-polyimides. J Non-Cryst Solids 299–302:1057–1061. doi:10.1016/S0022-3093(01)01130-9

    Article  Google Scholar 

  37. Jarząbek B, Weszka J, Domański M, Jurusik J, Cisowski J (2008) Optical studies of aromatic polyazomethine thin films. J Non-Cryst Solids 354:856–862. doi:10.1016/j.jnoncrysol.2007.08.013

    Article  Google Scholar 

  38. Albu RM, Avram E, Musteata VE, Homocianu M, Ioan S (2011) Opto-electrical properties of some quaternized polysulfones. High Perform Polym 23(1):85–96. doi:10.1177/0954008310379166

    CAS  Google Scholar 

  39. Hougham G, Tesoro G, Viehbeck A, Chapple-Sokol D (1994) Polarization effects of fluorine on the relative permittivity in polyimides. Macromolecules 27:5964–5971. doi:10.1021/ma00099a006

    Article  CAS  Google Scholar 

  40. Groh W, Zimmermann A (1991) What is the lowest refractive index of an organic polymer? Macromolecules 24(25):6660–6663. doi:10.1021/ma00025a016

    Article  CAS  Google Scholar 

  41. Sayre R (1958) The extension of bond and molar refraction concepts to liquid organic phosphorus compounds. J Am Chem Soc 80(20):5438–5440. doi:10.1021/ja01553a030

    Article  CAS  Google Scholar 

  42. Nada AMA, Dawy M, Salama AH (2004) Dielectric properties and ac-conductivity of cellulose polyethylene glycol blends. Mater Chem Phys 84:205–215. doi:10.1016/S0254-0584(02)00418-2

    Article  CAS  Google Scholar 

  43. Saxena P, Gaur MS, Shukla P, Khare PK (2008) Relaxation investigation in polysulfone: thermally stimulated discharge current and dielectric spectroscopy. J Electrost 66:584–588. doi:10.1016/j.elstat.2008.07.002

    Article  CAS  Google Scholar 

  44. Rudnik E, Dobkowski Z (1995) Investigations and molecular modeling of some thermophysical properties of polysulfones. J Therm Anal Calorim 45:1153–1158. doi:10.1007/BF02547488

    Article  CAS  Google Scholar 

  45. Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Dynamic relaxation characteristics of Matrimid® polyimide. Polymer 50(3):891–897. doi:10.1016/j.polymer.2008.12.013

    Article  CAS  Google Scholar 

  46. Starkweather HW (1981) Simple and complex relaxations. Macromolecules 14(5):1277–1281. doi:10.1021/ma50006a025

    Article  CAS  Google Scholar 

  47. Starkweather HW (1991) Aspects of simple, non-cooperative relaxations. Polymer 32:2443–2448. doi:10.1016/0032-3861(91)90087-Y

    Article  CAS  Google Scholar 

  48. Zhang S, Runt J (2004) Segmental dynamics and ionic conduction in poly(vinyl methyl ether)-lithium perchlorate complexes. J Phys Chem B 108(20):6295–6302. doi:10.1021/jp0499777

    Article  CAS  Google Scholar 

  49. Havriliak S, Havriliak SJ (1997) Dielectric and mechanical relaxation in materials. Hanser Publishers, Cincinnati

    Google Scholar 

  50. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of structural, thermal and electrical behaviour of polymer nanocomposite electrolytes. eXPRESS Polym Lett 2(9):630–638. doi:10.3144/expresspolymlett.2008.76

    Article  CAS  Google Scholar 

  51. Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404–408. doi:10.1016/j.matchemphys.2010.10.047

    Article  CAS  Google Scholar 

  52. Kuczkowski A, Zielinski R (1982) The AC conductivity of the polyvinylcarbazole-tetracyanoquinodimethane (PVK:TCNQ) CT complex. J Phys D Appl Phys 15(9):1765–1768. doi:10.1088/0022-3727/15/9/021

    Article  CAS  Google Scholar 

  53. Clarke PJ, Ray AK, Tsibouklis J, Werninck AR (1991) Dielectric loss in novel disubstituted polydiacetylenes. J Mater Sci: Mater Electronics 2(1):18–20. doi:10.1007/BF00694999

    Article  CAS  Google Scholar 

  54. Smith R (1980) Semiconductors. Cambridge University Press, London

    Google Scholar 

  55. Muruganand S, Narayandass SK, Mangalaraj D, Vijayan TM (2001) Dielectric and conduction properties of pure polyimide films. Polym Int 50:1089–1094. doi:10.1002/pi.749

    Article  CAS  Google Scholar 

  56. Banik I (2009) One way to explain the Meyer-Neldel rule. Chalcogenide Lett 6(12):629–633. ISSN: 15848663

    Google Scholar 

  57. Meier H (1974) Organic semiconductors. Verlag Chemie, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ioan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buruiana, LI., Avram, E., Popa, A. et al. Electrical conductivity and optical properties of a new quaternized polysulfone. Polym. Bull. 68, 1641–1661 (2012). https://doi.org/10.1007/s00289-011-0659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0659-9

Keywords

Navigation