Skip to main content
Log in

UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Superabsorbent hydrogels of chitosan-g-polyacrylamide with N,N′-methylene-bis-acrylamide as a crosslinker were prepared via UV irradiation in the absence of photoinitiator under homogeneous conditions. The product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy to confirm the formation of hydrogels. The transparent hydrogels have been observed to exhibit as much as 2987% swelling in acidic solution. In addition, the hydrogel which hydrolyzed for 6 h (0.24 × 103 min) can have a water uptake of 106 times its weight (5300% swelling for 0.5 g hydrogel). The effect of several variables such as time, temperature, pH, acrylamide/chitosan ratio, crosslinker amount, and different media was explored. Finally, the prepared hydrogel have been used in adsorption of Zn(II) ions from water with high removal efficiency (0.636 meq g−1 or 20.8 mg g−1) at pH = 7. The experimental data of the adsorption equilibrium from Zn(II) solution fit well with the pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608

    CAS  Google Scholar 

  2. Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41:4589–4598

    Article  CAS  Google Scholar 

  3. Pagonis K, Bokias G (2007) Temperature- and solvent-sensitive hydrogels based on N-isopropylacrylamide and N,N-dimethylacrylamide. Polym Bull 58:289–294

    Article  CAS  Google Scholar 

  4. Tang QM, Wu JH, Lin JM (2008) A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid. Carbohydr Polym 73:315–321

    Google Scholar 

  5. Firestone BA, Siegel RA (1988) Dynamic pH-dependent swelling properties of a hydrophobic poly-electrolyte gel. Polym Commun 29:204–208

    CAS  Google Scholar 

  6. Rao KSVK, Ha CS (2009) pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior. Polym Bull 62:167–181

    Article  CAS  Google Scholar 

  7. Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  8. Abedi-Koupai J, Sohrab F, Swarbrick G (2008) Evaluation of hydrogel application on soil water retention characteristics. J Plant Nutr 31:317–331

    Article  CAS  Google Scholar 

  9. Al-Kahtani AA, Sherigara BS (2009) Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide). J Mater Sci 20:1437–1445

    Article  CAS  Google Scholar 

  10. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613

    Article  CAS  Google Scholar 

  11. Kim SJ, Shin SR, Kim NG, Kim SI (2005) Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide). J Macromol Sci Pure Appl Chem A42:1073–1083

    CAS  Google Scholar 

  12. Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1—Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys 201:923–930

    Article  CAS  Google Scholar 

  13. Mahdavinia GR, Pourjavadi A, Zohuriaan-Mehr MJ (2008) Synthesis and properties of highly swelling PAAm/chitosan semi-IPN hydrogels. Macromol Symp 274:171–176

    Article  CAS  Google Scholar 

  14. Wu JH, Lin JM, Zhou M, Wei CR (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    Article  CAS  Google Scholar 

  15. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407

    Article  CAS  Google Scholar 

  16. Kim SJ, Shin SR, Shin DI, Kim IY, Kim SI (2005) Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly (hydroxyethyl methacrylate). J Appl Polym Sci 96:86–92

    Article  CAS  Google Scholar 

  17. Chen SL, Liu MZ, Jin SP, Chen Y (2005) Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly (methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci 98:1720–1726

    Article  CAS  Google Scholar 

  18. Wang T, Gunasekaran S (2006) State of water in chitosan-PVA hydrogel. J Appl Polym Sci 101:3227–3232

    Article  CAS  Google Scholar 

  19. Holt MS (2000) Sources of Chemical Contaminants and Routesin to the Fresh water Environment. Food Chem Toxicol 38:21–27

    Google Scholar 

  20. Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47:254–260

    Article  CAS  Google Scholar 

  21. Barros FCF, Sousa FW, Cavalcante RM, Carvalho TV, Dias FS, Queiroz DC, Vasconcellos LCG, Nascimento RF (2008) Removal of copper, nickel and zinc ions from aqueous solution by chitosan-8-hydroxyquinoline beads. Clean 36:292–298

    CAS  Google Scholar 

  22. Abou Taleb FM (2008) Radiation synthesis of polyampholytic and reversible ph-responsive hydrogel and its application as drug delivery system. Polym Bull 61:341–351

    Article  CAS  Google Scholar 

  23. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  24. Lim DW, Whang HS, Yoon KJ, Ko SW (2001) Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile. J Appl Polym Sci 79:1423–1430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Gazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber-Samandari, S., Gazi, M. & Yilmaz, E. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym. Bull. 68, 1623–1639 (2012). https://doi.org/10.1007/s00289-011-0643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0643-4

Keywords

Navigation