Skip to main content
Log in

Modeling of precipitation polymerization II: calculation of macroradicals concentrations in the continuous and dispersed phases

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

According to Hunkeler model, precipitation polymerization of acrylic acid in organic media takes place simultaneously in the both dispersed and continuous phases. In this research, a model is presented based on mass balances of individual species. Hence, concentrations of macroradicals and polymer chains, in different chain lengths, were calculated in the both phases. Number- and weight-average degrees of polymerization and their distributions were concluded in the both dispersed and continuous phases. Calculation of macroradicals concentration was conducted with quasi-steady state approximation (QSSA) as well as without QSSA (based on the governing differential equations). Macroradical precipitate as soon as reaching to critical chain length. Moreover, precipitation is the main termination reaction in the continuous phase. Polymer with critical chain length is the most populated species in the dispersed phase. Comparison of theoretical and experimental results is in good agreement. QSSA theory gives better results than without QSSA theory because occlusion of macroradicals in the dispersed phase does not occur in the precipitation polymerization of water-soluble monomers in the organic media. This article has proved that the polydispersity index (PDI) of polymer product in the precipitation polymerization of acrylic acid in toluene that follows simultaneous polymerization model is less than that of PDI in the other free radical polymerization methods. Centrifugation method was used to sediment fine polymer particles. The yield of reaction was increased by sedimentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c:

Continuous phase

d:

Dispersed phase

I :

Initiator

\( [I] \) :

Initiator concentration (mol/L)

k cr :

Critical chain length for solubility of macroradicals in the continuous phase

k d :

Rate constant for the thermal decomposition of initiator (min−1)

\( k_{\rm{d}}^{\prime } \) :

Rate constant for the monomer-enhanced decomposition of initiator (L/mol min)

k p :

Rate constant for the chain propagation (L/mol min)

k tc :

Rate constant for the chain termination by combination (L/mol min)

k td :

Rate constant for the chain termination by disproportionation (L/mol min)

\( k_{{\rm{tr,M}}} \) :

Rate constant for the chain transfer to the monomer (L/mol min)

\( k_{{\rm{tr,S}}} \) :

Rate constant for the chain transfer to the solvent (L/mol min)

k v :

Rate constant for the change of particle kind (min−1)

M :

Monomer

\( [M] \) :

Monomer concentration (mol/L)

\( \overline{M}_{n} \) :

Number-average molecular weight (g/mol)

\( \overline{M}_{w} \) :

Weight-average molecular weight (g/mol)

\( \rm{PDI} \) :

Polydispersity index

\( P_{i} \) :

Dead polymer containing i monomer unit

\( R_{0}^{ * } \) :

Primary radical

\( R_{i}^{ * } \) :

Macroradical containing i monomer unit

\( \Re_{i} \) :

Rate of initiation (mol/L min)

S :

Solvent

\( V_{\rm{P}}^{\prime } \) :

Molar volume of polymer (L/mol)

\( \overline{X}_{n} \) :

Number-average degree of polymerization

\( \overline{X}_{w} \) :

Weight-average degree of polymerization

\( \phi_{1} \) :

Volume fraction of primary particles

\( \phi_{2} \) :

Volume fraction of secondary particles

\( \phi_{\rm{c}} \) :

Volume fraction of continuous phase

\( \phi_{\rm{d}} \) :

Volume fraction of dispersed phase

\( \varphi \) :

Partition coefficient between continuous and dispersed phase

\( [\eta ] \) :

Intrinsic viscosity (L/g)

\( \lambda \) :

Conventional moment for macroradicals

\( \lambda^{*} \) :

Finite moment for macroradicals

\( \mu \) :

Conventional moment for dead polymers

\( \mu^{*} \) :

Finite moment for dead polymers

\( \varsigma \) :

Probability of propagation reaction

References

  1. Li G, Yang C, He Y, Yu X (2007) Studies of precipitation polymerization of acrylamide with quaternary ammonium cationic co monomer in potassium citrate solution. J Appl Polym Sci 106:2479–2484

    Article  CAS  Google Scholar 

  2. Guyot A (1996) Precipitation polymerization. In: Salamone JC (ed) Polymeric material encyclopedia, vol 9, 1st edn. CRC Press, Boca Raton, p 7228

    Google Scholar 

  3. Chernyshev AV, Soini AE, Surovtsev IV, Maltsev VP, Soini E (1997) A mathematical model of dispersion radical polymerization kinetics. J Polym Sci Polym Chem 35:1799–1807

    Article  CAS  Google Scholar 

  4. Chernyshev AV, Soini AE, Maltsev VP, Soini E (1998) A model of complete classical treatment of dispersion radical polymerization kinetics. Macromolecules 31:6455–6460

    Article  CAS  Google Scholar 

  5. Charpentier PA, DeSimone JM, Roberts GW (2000) Continuous precipitation polymerization of vinylidene fluoride in supercritical carbon dioxide: modeling the rate of polymerization. Ind Eng Chem Res 39:4588–4596

    Article  CAS  Google Scholar 

  6. Saraf MK, Gerard S, Wojcinski LM, Charpentier PA, Desimone JM, Roberts GW (2002) Continuous precipitation polymerization of vinylidene fluoride in supercritical carbon dioxide: formation of polymer with bimodal molecular weight distribution. Macromolecules 35:7976–7985

    Article  CAS  Google Scholar 

  7. Ahmed TS, DeSimone JM, Roberts GW (2004) Continuous precipitation polymerization of vinylidene fluoride in supercritical carbon dioxide: modeling the molecular weight distribution. Chem Eng Sci 59:5139–5144

    Article  CAS  Google Scholar 

  8. McCarthy SJ, Elbing EE, Wilson IR, Gilbert IG, Napper DH, Sangster DF (1986) Seeded heterogeneous polymerization of acrylonitrile. Macromolecules 19:2440–2448

    Article  CAS  Google Scholar 

  9. Nishida R, Poehlein GW, Schork FJ (1995) Polymerization of acrylonitrile in continuous stirred tank reactors. Polym React Eng 3:397–420

    CAS  Google Scholar 

  10. Barret KEJ, Thomas HR (1969) Kinetic of dispersion polymerization of soluble monomers. I: methyl methacrylate. J Polym Sci A 7:2621–2650

    Article  Google Scholar 

  11. Avela A, Poersch H, Reichert K (1990) Modeling the kinetic of the precipitation polymerization of acrylic acid. Die Ang Makromol Chem 175:107–116

    Article  CAS  Google Scholar 

  12. Poersch-Panke HG, Avela A, Reichert KH (1993) Precipitation polymerization of acrylic acid-kinetics, viscosity and heat transfer. Die Ang Makromol Chem 206:157–169

    Article  CAS  Google Scholar 

  13. Liu T, DeSimone JM, Roberts GW (2006) Kinetics of the precipitation polymerization of acrylic acid in supercritical carbon dioxide: the locus of polymerization. Chem Eng Sci 61:3129–3139

    Article  CAS  Google Scholar 

  14. Mickley HS, Michaels AS, Albert L (1962) Kinetics of precipitation polymerization of vinyl chloride. J Polym Sci Polym chem 6:121–140

    Google Scholar 

  15. Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishigawa H (2001) Simulation of particle formation stage in the dispersion polymerization of styrene. Macromolecules 34:3261–3270

    Article  CAS  Google Scholar 

  16. Chatzidoukas C, Pladis P, Kiparissides C (2003) Mathematical modeling of dispersion polymerization of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 42:743–751

    Article  CAS  Google Scholar 

  17. Mueller PA, Storti G, Morbidell M (2005) The reaction locus in supercritical carbon dioxide dispersion polymerization, the case of poly (methylmethacrylate). Chem Eng Sci 60:377–397

    Article  CAS  Google Scholar 

  18. Mueller PA, Storti G, Morbidell M (2005) Detailed modeling of MMA dispersion polymerization in supercritical carbon dioxide. Chem Eng Sci 60:1911–1925

    Article  CAS  Google Scholar 

  19. Mueller PA, Storti G, Morbidelli M, Meyer T (2007) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide: control of molecular weight distribution by adjusting particle surface area. Macromol Symp 259:218–225

    Article  CAS  Google Scholar 

  20. Mueller PA, Storti G, Morbidelli M, Apostolo M, Martin R (2005) Modeling of vinylidene fluoride heterogeneous polymerization in supercritical carbon dioxide. Macromolecules 38:7150–7163

    Article  CAS  Google Scholar 

  21. Bunyakan C, Armanet L, Hunkeler D (1999) Precipitation polymerization of acrylic acid in toluene II: Mechanism and kinetic modeling. Polymer 40:6225–6234

    Article  CAS  Google Scholar 

  22. Bouhendi H, Haddi-Asl V, Rafizadeh M, Safinejad A (2007) Modeling of precipitation polymerization I: The method of finite molecular weight moments. E-Polymers 123:1–19

    Google Scholar 

  23. Bunyakan C, Hunkeler D (1999) Precipitation polymerization of acrylic acid in toluene I: Synthesis, characterization and kinetics. Polymer 40:6213–6224

    Article  CAS  Google Scholar 

  24. Bamford GH (1988) Radical polymerization, vol 13. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering, 2nd edn. John Wiley & Sons, New York, p 708

    Google Scholar 

  25. Chapiro A, Dulieu J (1977) Influence of solvents on the molecular associations and on the radiation initiated polymerization of acrylic acid. Eur Polym J 13:563–577

    Article  CAS  Google Scholar 

  26. Gromov VF, Galperina NI, Osmanov TO, Khomikovskii PM, Abkin AD (1980) Effect of solvent on chain propagation and termination rates in radical polymerization. Eur Polym J 16:529–535

    Article  CAS  Google Scholar 

  27. Kurata M, Tsunashima Y (1999) Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules, 4th edn. In: Brandrupt J, Immergut EH, Grulke EA (eds) Polymer handbook. John Wiley & Sons, New York, p 8

    Google Scholar 

  28. Biesenberger JA, Sebastian DH (1983) Principle of polymerization engineering. John Wiley & Sons, New York, p 103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bouhendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhendi, H., Haddadi-Asl, V. & Rafizadeh, M. Modeling of precipitation polymerization II: calculation of macroradicals concentrations in the continuous and dispersed phases. Polym. Bull. 68, 1603–1621 (2012). https://doi.org/10.1007/s00289-011-0640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0640-7

Keywords

Navigation