Skip to main content
Log in

Modeling of kinetics of pertechnetate removal by amino-functionalized glycidyl methacrylate copolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Technetium-99 comprises a significant health risk, since edible plants can bioaccumulate and convert it to more lipophilic species that cannot be excreted through urine. Batch kinetics of pertechnetate removal from aqueous solutions by two samples of crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) functionalized with diethylene triamine (PGME-deta) was investigated at the optimum pH value of 3.0, and the initial solution activity of 325 MBq dm−3. PGME-deta was characterized by elemental analysis, mercury intrusion porosimetry, and scanning electron microscopy. Five kinetic models (pseudo-first, pseudo-second order, Elovich, Bangham, and intraparticle diffusion) were used to determine the best-fit equation for pertechnetate sorption. After 24 h, PGME-deta samples sorbed more than 98% of pertechnetate present, with maximum sorption capacity of 25.5 MBq g−1, showing good potential for remediation of slightly contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwochau K (2000) Artificial occurrence. In: Technetium: chemistry and radiopharmaceutical applications, 1st edn. Wiley-VCH, New York, pp 10–34

    Google Scholar 

  2. Garcia-Leon M (2005) 99Tc in the environment: sources, distribution and methods. J Nucl Radiochem Sci 6(3):253–259

    CAS  Google Scholar 

  3. Rard JA, Rand MH, Anderegg G, Wanner H (1999) Discussion of data selection. In: Sandino MCA, Östhols E (eds) Chemical thermodynamics 3: chemical thermodynamics of technetium. Elsevier Science, North-Holland, pp 63–266

  4. Winkler A, Brühl H, Trapp C, Bock WD (1998) Mobility of technetium in various rock and defined combinations of natural minerals. Radiochim Acta 44(45):183–186

    Google Scholar 

  5. Wharton MJ, Atkins B, Charnock JM, Livens FR, Pattrick RAD, Colison D (2000) An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with Mackinawite (FeS). Appl Geochem 15:347–354

    Article  CAS  Google Scholar 

  6. USEPA, U.S. Environmental Protection Agency, Office of Air and Radiation (2004) Contaminant geochemistry and Kd values. In: Understanding variation in partition coefficient, Kd, values, volume III: review of geochemistry and available Kd values for Americium, Arsenic, Curium, Iodine, Neptunium, Radium, and Technetium. EPA 402-R-04-002C. http://www.epa.gov/radiation/docs/kdreport/vol3/402-r-04-002c.pdf. Accessed 13 June 2011

  7. Yoshihara K (1996) Technetium in the environment. Top Curr Chem 176:17–35

    CAS  Google Scholar 

  8. Amano R, Ando A, Hiraki T, Mori H, Matsuda H, Hisada K (1990) Rapid uptake of technetium-99m pertechnetate by several plants. Radioisotopes 39:583–586

    Google Scholar 

  9. USEPA (2002) EPA facts about technetium-99. http://www.epa.gov/superfund/health/contaminants/radiation/pdfs/technetium.pdf. Accessed 13 June 2011

  10. Peretroukhine V, Sergeant C, Devès G, Poulain S, Vesvres MH, Thomas B, Simonoff M (2005) Technetium sorption by stibnite from natural water. Radiochim Acta 94(9–11):665–669

    Google Scholar 

  11. Lieser KH, Bauscher CH (1988) Technetium in the hydrosphere and in the geosphere. II. Influence of pH, of complexing agents and of some minerals on the sorption of technetium. Radiochim Acta 44(45):125–128

    Google Scholar 

  12. Cul GD, del Bostick WD, Trotter DR, Osborne PE (1993) Technetium-99 removal from process solutions and contaminated groundwater. Sep Sci Technol 28:551–564

    Article  Google Scholar 

  13. Bors J, Dultz S, Riebe B (2000) Organophilic bentonites as adsorbents for radionuclides I. Adsorption of ionic fission products. Appl Clay Sci 16:1–13

    Article  CAS  Google Scholar 

  14. Gu B, Dowlen KE, Liang L, Clausen JL (1996) Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep Technol 6:123–132

    Article  CAS  Google Scholar 

  15. Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Colloid Interface Sci 305:209–217

    Article  CAS  Google Scholar 

  16. Holm E, Gäfvert T, Lindahl P, Roos P (2000) In situ sorption of technetium using activated carbon. Appl Radiat Isot 53:153–157

    Article  CAS  Google Scholar 

  17. Liang L, Gu B, Yin X (1996) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Technol 6:111–112

    Article  CAS  Google Scholar 

  18. Chen QJ, Dahlgaard H, Hansen HJM, Aarkrog A (1990) Determination of 99Tc in environmental samples by anion exchange and liquid–liquid extraction at controlled valency. Anal Chim Acta 228:163–167

    Article  CAS  Google Scholar 

  19. Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282:641–644

    Article  CAS  Google Scholar 

  20. Bonnesen PV, Brown GM, Alexandratos S, Bavoux LB, Presley DJ, Patel V, Ober R, Moyer BA (2000) Development of bifunctional anion exchange resins with improved selectivity and sorptive kinetics for pertechnetate. Batch-equilibrium experiments. Environ Sci Technol 34:3761–3766

    Article  CAS  Google Scholar 

  21. Chen J, Veltkamp JC (2002) Pertechnetate removal by macroporous polymer impregnated with 2-nitrophenyl octyl ether (NPOE). Solvent Extr Ion Exch 20:515–524

    Article  CAS  Google Scholar 

  22. Katayev EA, Kolesnikov GV, Sessler JL (2009) Molecular recognition of pertechnetate and perrhenate. Chem Soc Rev 38:1572–1586

    Article  CAS  Google Scholar 

  23. Nastasović A, Sandić Z, Suručić Lj, Maksin D, Jakovljević D, Onjia A (2009) Kinetics of hexavalent chromium sorption on amino-functionalized macroporous glycidyl methacrylate copolymer. J Hazard Mater 171(1–3):153–159

    Article  Google Scholar 

  24. Kalalova E, Thuy P (1990) Separation of iridium from platinum using a modified glycidyl methacrylate copolymer with diethylamino groups. Angew Makromol Chem 180:159–167

    Article  CAS  Google Scholar 

  25. Bicak N, Sherrington DC, Sungur S, Tan N (2003) A glycidyl methacrylate-based resin with pendant urea groups as a high capacity mercury specific sorbent. React Funct Polym 54:141–147

    Article  CAS  Google Scholar 

  26. Kim E, Benedetti MF, Boulègue J (2004) Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium. Water Res 38:448–454

    Article  CAS  Google Scholar 

  27. Plevaka AV, Troshkina ID, Zemskova LA, Voit AV (2009) Rhenium sorption by fibrous chitosan-carbon materials. Russ J Inorg Chem 54(7):1168–1171

    Article  Google Scholar 

  28. USEPA (1995) Dynaphore, Inc. ForagerTM Sponge Technology Innovative Tecnology Evaluation Report 540/R-94/522a. http://www.epa.gov/nrmrl/lrpcd/site/reports/540r94522/540r94522.pdf. Accessed 13 June 2011

  29. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater B136:681–689

    Article  Google Scholar 

  30. Knoll G (1979) Radiation detection and measurement. Wiley, Hoboken, NJ

    Google Scholar 

  31. Hercigonja RV, Maksin DD, Nastasović AB, Trifunović SS, Glodić PB, Onjia AE (2011) Adsorptive removal of technetium-99 using macroporous poly(GMA-co-EGDMA) modified with diethylene triamine. J Appl Polym Sci. doi: 10.1002/app.34693

  32. Švec F, Fréchet JMJ (1995) Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules 28:7580–7582

    Article  Google Scholar 

  33. Paredes B, González S, Rendueles M, Villa-García MA, Díaz M (2003) Influence of the amination conditions on the textural properties and chromatographic behaviour of amino-functionalized glycidyl methacrylate-based particulate supports. Acta Mater 51:6189–6198

    Article  CAS  Google Scholar 

  34. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics Instrument Corporation, Norcross, GA

    Google Scholar 

  35. Darab JG, Amonette AB, Burke DSD, Orr RD (2007) Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chem Mater 19:5703–5713

    Article  CAS  Google Scholar 

  36. Westinghouse Hanford Co (1994) Report WHC-SD-WM-RD-044. http://www.osti.gov/bridge/servlets/purl/10148288-GkWAwl/native/10148288.pdf. Accessed 12 September 2011

  37. IAEA (1994) Classification of radioactive waste: a safety guide. Safety series No. 111-G-l.l International Atomic Energy Agency, Vienna

  38. Bond AH, Chang FWK, Thakkar AH, Williamson JM, Gula MJ, Harvey JT, Griffin ST, Rogers RD, Horwitz EP (1999) Design, synthesis, and uptake performance of ABEC resins for the removal of pertechnetate from alkaline radioactive wastes. Ind Eng Chem Res 38:1676–1682

    Article  CAS  Google Scholar 

  39. Anderson H, Asprey L (1960) Solvent extraction process for plutonium. US patent 2924506

  40. Rard JA (2005) Current status of the thermodynamic data for technetium and its compounds and aqueous species. J Nucl Radiochem Sci 6:197–204

    CAS  Google Scholar 

  41. Um W, Chang HS, Icenhower JP, Lukens WW, Serne RJ, Qafoku NP, Westsik JH Jr, Buck EC, Smith SC (2011) Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation. Environ Sci Technol 45:4904–4913

    Article  CAS  Google Scholar 

  42. Wildung RE, McFadden KM, Garland TR (1979) Technetium sources and behaviour in the environment. J Environ Qual 8:156–161

    Article  CAS  Google Scholar 

  43. IAEA (2002) Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers, technical reports series No. 408. IAEA, Vienna

  44. USEPA (1981) U.S. Environmental Protection Agency. Summary report: control and treatment technology for the metal finishing industry-ion exchange. USEPA EPA 625/-81-007

  45. Diamond RM, Whitney DC (1966) Resin selectivity in dilute to concentrated aqueous solutions. In: Marinsky J (ed) Ion exchange, a series of advances, vol 1. Marcel Dekker, New York, pp 277–351

  46. Gregor HP, Belle J, Marcus RA (1955) Studies on ion-exchange resins. XIII. Selectivity coefficients of quaternary base anion-exchange resins toward univalent anions. J Am Chem Soc 77:2713–2719

    Article  CAS  Google Scholar 

  47. Piracha A, Zulfiqar S, McNeill IC (1996) The thermal degradation of copolymers of glycidyl methacrylate and vinylacetate. Polym Degrad Stab 51:319–326

    Article  CAS  Google Scholar 

  48. Çaykara T, Çakar F, Demirci S (2008) A new type of poly(glycidyl methacrylate) microbeads with surface grafted iminodiacetic acid: synthesis and characterization. Polym Bull 61:311–318

    Article  Google Scholar 

  49. Koopal LK, van Riemsdijk WH, de Wit JCM, Benedetti MF (1994) Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci 166:51–60

    Article  CAS  Google Scholar 

  50. Oram B (2011) The pH of water. Water Research Center. http://www.water-research.net/ph.htm. Accessed on 11 September 2011

  51. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13

    Article  CAS  Google Scholar 

  52. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. ***K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  53. Sparks DL (1989) Kinetics of soil chemical processes. Academic Press Inc., New York

    Google Scholar 

  54. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Sep Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  55. Febrianto J, Kosasih AN, Sunarso J, Ju Y, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  56. Janoš P, Michálek P, Turek L (2007) Sorption of ionic dyes onto untreated low-rank coal–oxihumolite: a kinetic study. Dyes Pigment 74:363–370

    Article  Google Scholar 

  57. Lin CC, Lai Y (2006) Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas Aeruginosa PU21 beads. J Hazard Mater 137:99–105

    Article  CAS  Google Scholar 

  58. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot (Trans Ichem E, B) 76(4):332–340

    Article  CAS  Google Scholar 

  59. Zhang J, Stanforth R (2005) Slow adsorption reaction between arsenic species and Goethite (α-FeOOH): diffusion or heterogeneous surface reaction control. Langmuir 21:2895–2901

    Article  CAS  Google Scholar 

  60. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites, II: kinetics. J Am Chem Soc 69:2836–2842

    Article  CAS  Google Scholar 

  61. Özcan A, Özcan AS (2005) Adsorption of acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. J Hazard Mater B125:252–259

    Article  Google Scholar 

  62. Singh S, Rai BN, Rai LC (2001) Ni(II) and Cr(VI) sorption kinetics by Mycrocystis in single and multimetallic system. Process Biochem 36:1205–1212

    Article  CAS  Google Scholar 

  63. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci 162:39–58

    Article  Google Scholar 

  64. Aharoni C, Ungarish M (1977) Kinetics of activated chemisorptions: part 2. Theoretical models. J Chem Soc Faraday Trans 73:456–464

    Article  CAS  Google Scholar 

  65. Tutem E, Apak R, Unal CF (1998) Adsorptive removal of chlorophenols from water by bituminous shale. Water Res 32(8):2315–2324

    Article  CAS  Google Scholar 

  66. Ofomaja AE, Naidoo EB, Modise SJ (2010) Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Ind Eng Chem Res 49:2562–2572

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Ministry of Education and Science of the Republic of Serbia (Projects No. III 43009, III 45001 and ON 172018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela D. Maksin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksin, D.D., Hercigonja, R.V., Lazarević, M.Ž. et al. Modeling of kinetics of pertechnetate removal by amino-functionalized glycidyl methacrylate copolymer. Polym. Bull. 68, 507–528 (2012). https://doi.org/10.1007/s00289-011-0634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0634-5

Keywords

Navigation