Advertisement

Polymer Bulletin

, Volume 68, Issue 6, pp 1501–1513 | Cite as

Activated anionic ring-opening polymerization of ε-caprolactam with magnesium di(ε-caprolactamate) as initiator: effect of magnesium halides

  • Yulia A. Piskun
  • Irina V. Vasilenko
  • Ludmila V. Gaponik
  • Sergei V. KostjukEmail author
Original Paper

Abstract

The activated anionic ring-opening polymerization of ε-caprolactam initiated by 0.35 mol% of combined initiator, i.e., equimolar mixture of magnesium di(ε-caprolactamate) (CL2Mg) with magnesium halides (MgCl2, MgBr2, and MgI2) as well as of ε-caprolactam magnesium bromide (CLMgBr) in the presence of 0.35 mol% of N-acetyl-ε-caprolactam as an activator has been investigated in the temperature range 140–200 °C. It was found that the reaction rate increased while the apparent activation energy decreased in the following series: CL2Mg/MgCl2 < CL2Mg/MgBr2 ~ CLMgBr < CL2Mg/MgI2. In addition, the poly(ε-caprolactam)s prepared with CL2Mg/MgX2 (MgX2 = MgCl2, MgBr2, and MgI2) are characterized by slightly higher thermal stability than polymers obtained with CLMgBr as initiator. These observations were explained in terms of the coordination of Lewis acids (MgX2, where X = Cl, Br, and I) with imide carbonyl of N-acyllactam end groups leading to the increase of their reactivity and stability.

Keywords

Ring-opening polymerization Anionic polymerization ε-Caprolactam Poly(ε-caprolactam) Magnesium di(ε-caprolactamate) 

Notes

Acknowledgment

We would like to thank the Institut Charles Gerhardt, equipe “IAM” (France) for TGA analyses of polyamide samples.

Supplementary material

289_2011_621_MOESM1_ESM.doc (519 kb)
Supplementary material 1 (DOC 519 kb)

References

  1. 1.
    Hashimoto K (2000) Ring-opening polymerization of lactams. Living anionic polymerization and its applications. Prog Polym Sci 25:1411–1462CrossRefGoogle Scholar
  2. 2.
    Sekiguchi H (1984) Lactams and cyclic imides. In: Ivin KJ, Saegusa T (eds) Ring-opening polymerization, vol 2. Elsevier, London, p 809Google Scholar
  3. 3.
    Kotelnikov VA, Kurashev VV, Frunze TM (1987) Some features of anionic polymerization of ε-caprolactam in the presence of aluminum caprolactamate. Vysokomol Soedin 29A:2642–2646Google Scholar
  4. 4.
    Kotelnikov VA, Kurashev VV, Tolstobrodova ID, Danilevskaya LB, Zaharkin LI, Chekulaeva LA, Gavrilenko VV, Garbuzova IA (1989) Mechanism of anionic polymerization of ε-caprolactam in the presence of magnesium lactamates. Dokl Akad Nauk SSSR 308:1176–1181Google Scholar
  5. 5.
    Kotelnikov VA, Danilevskaya LB, Kurashev VV, Ilina MN, Papkov VV, Gavrilenko VV, Chekulaeva LA (1993) Influence of the nature of catalyst of anionic polymerization of lactams on the thermal stability of obtained polyamides. Vysokomol Soedin 35A:1257–1260Google Scholar
  6. 6.
    Udipi K, Dave RS, Kruse RL, Stebbins LR (1997) Polyamides from lactams via anionic ring-opening polymerization: 1. Chemistry and some recent findings. Polymer 38:927–938CrossRefGoogle Scholar
  7. 7.
    Crespy D, Landfester K (2005) Anionic polymerization of ε-caprolactam in miniemulsion: synthesis and characterization of polyamide-6 nanoparticles. Macromolecules 38:6882–6887CrossRefGoogle Scholar
  8. 8.
    Budín J, Brožek J, Roda J (2006) Polymerization of lactams, 96. Anionic copolymerization of ε-caprolactam with ω-laurolactam. Polymer 47:140–147CrossRefGoogle Scholar
  9. 9.
    Budín J, Roda J, Brožek J, Kříž J (2006) Anionic copolymerization of ε-caprolactam with ω-laurolactam. Macromol Symp 240:78–82CrossRefGoogle Scholar
  10. 10.
    Rusu G, Ueda K, Rusu E, Rusu M (2001) Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization. Polymer 42:5669–5678CrossRefGoogle Scholar
  11. 11.
    Mateva R, Petrov P (1999) On the activating anionic polymerization of ε-caprolactam in bulk caused by bis carbamyl derivatives. Eur Polym J 35:325–333CrossRefGoogle Scholar
  12. 12.
    Mateva R, Petrov P, Rousseva S, Dimitrov R, Zolova G (2000) On the structure of poly-ε-caprolactams, obtained with bifunctional N-carbamyl derivatives of lactams. Eur Polym J 36:813–821CrossRefGoogle Scholar
  13. 13.
    Ricco L, Russo S, Orefice G, Riva F (2001) Caprolactam-laurolactam copolymers: fast activated anionic synthesis, thermal properties and structural investigations. Macromol Chem Phys 202:2114–2121CrossRefGoogle Scholar
  14. 14.
    Šimůnková E, Zelinger J, Kubánek V, Králíček J (1977) The structure and physical properties of copolymers of lactams. J Appl Polym Sci 21:65–81CrossRefGoogle Scholar
  15. 15.
    Marelová J, Roda J, Stehlíček J (1999) Anionic polymerization of ε-caprolactam in the presence of symmetrically substituted ureas. Eur Polym J 35:145–155CrossRefGoogle Scholar
  16. 16.
    Sobotík R, Šrubař R, Roda J (1997) Polymerization of lactams, 88. Copolymers poly(ε-caprolactam)-block-polybutadiene prepared by anionic polymerization, part III. Model polymerizations initiated with potassium salt of ε-caprolactam and accelerated with isocyanates and their derivatives. Macromol Chem Phys 198:1147–1163CrossRefGoogle Scholar
  17. 17.
    Havlice J, Brožek J, Šáchová M, Nováková V, Roda J (1999) Polymerization of lactams, 92. Non-activated anionic polymerization of ε-caprolactam initiated with the sodium salt of ε-caprolactam. Macromol Chem Phys 200:1200–1207CrossRefGoogle Scholar
  18. 18.
    Arnoldová P, Prokopová I, Bernat P, Roda J (1999) Polymerization of lactams, 94. Formation of cyclic oligomers in anionic polymerization of 6-hexanelactam. Angew Makromol Chem 269:25–29CrossRefGoogle Scholar
  19. 19.
    Casazza E, Ricco L, Russo S, Scamporrino E (2007) Nature of low molar mass peak in anionic poly(ε-caprolactam). Its identification as macrocyclic ensemble. Macromolecules 40:739–745CrossRefGoogle Scholar
  20. 20.
    Ricco L, Casazza E, Mineo P, Russo S, Scamporrino E (2008) Nature of low molar mass peak in anionic poly(ε-caprolactam). Main aspects of its formation. Macromolecules 41:3904–3911CrossRefGoogle Scholar
  21. 21.
    Stehlíček J, Puffr R (1992) Anionic polymerization of 6-hexanelactam, 62. Fast catalytic systems in the anionic polymerization of 6-hexanelactam. Makromol Chem 193:2539–2545CrossRefGoogle Scholar
  22. 22.
    Bernášková A, Chromcová D, Brožek J, Roda J (2004) Polymerization of lactams, 95. Preparation of polyesteramides by the anionic polymerization of ε-caprolactam in the presence of poly(ε-caprolactone). Polymer 45:2141–2148CrossRefGoogle Scholar
  23. 23.
    Merna J, Chromcová D, Brožek J, Roda J (2006) Polymerization of lactams: 97. Anionic polymerization of ε-caprolactam activated by esters. Eur Polym J 42:1569–1580CrossRefGoogle Scholar
  24. 24.
    Chromcová D, Baslerová L, Roda J, Brožek J (2008) Polymerization of lactams. 99. Preparation of polyesteramides by the anionic copolymerization of ε-caprolactam and ε-caprolactone. Eur Polym J 44:1733–1742CrossRefGoogle Scholar
  25. 25.
    Roda J (2009) Polyamides. In: Dubois P, Coulembier O, Raquez J-M (eds) Handbook of ring-opening polymerization. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, pp 165–195CrossRefGoogle Scholar
  26. 26.
    Khodabakhshi K, Gilbert M, Dickens P, Hague R (2010) Optimizing conditions for anionic polymerization of caprolactam for inkjetting. Adv Polym Technol 29:226–236CrossRefGoogle Scholar
  27. 27.
    Černy Z, Kříž O, Fusek J, Čásensky B, Bernat P, Brožek J, Roda J (1998) Synthesis, characterization and properties of magnesium di(ε-caprolactamate). J Organomet Chem 555:237–245CrossRefGoogle Scholar
  28. 28.
    Nováková V, Šáchová M, Brožek J, Bernat P, Roda J (1996) Polymerization of lactams, 89. Magnesium caprolactamates as initiators of ε-caprolactam polymerization. Macromol Symp 102:115–122CrossRefGoogle Scholar
  29. 29.
    Kotelnikov VA, Kurashev VV, Danilevskaya LB, Konova IO, Gavrilenko VV, Chekulaeva LA, Garbuzova IA, Persic IE (1992) Active centers and some features of anionic polymerization of ε-caprolactam initiated by magnesium lactamates. Vysokomol Soedin 34A:69–75Google Scholar
  30. 30.
    Bernat P, Hladká O, Fišmanová M, Roda J, Brožek J (2008) Polymerization of lactams. 98: Influence of water on the non-activated polymerization of ε-caprolactam. Eur Polym J 44:32–41CrossRefGoogle Scholar
  31. 31.
    Kříž J, Dybal J, Kurková D, Arnoldová P, Prokopova I, Brožek J, Hroch Z (2001) Molecular structure of the complex of hexano-6-lactam with magnesium bromide. Macromol Chem Phys 202:1194–1199CrossRefGoogle Scholar
  32. 32.
    Kříž J, Dybal J, Kurková D, Prokopova I, Hroch Z (2001) Molecular structure of the complex of octano-8-lactam with magnesium bromide. Macromol Chem Phys 202:3371–3378CrossRefGoogle Scholar
  33. 33.
    Arnoldová P, Brus J, Prokopova I, Brožek J (2006) Role of magnesium complexes in the anionic polymerization of hexano-6-lactam. e-Polymers 068:1–11Google Scholar
  34. 34.
    Benson RE, Cairns TL (1948) Chemical reactions of caprolactam. J Am Chem Soc 70:2115–2118CrossRefGoogle Scholar
  35. 35.
    Hodek RB, Seiner JA (1985) US Patent 4508646Google Scholar
  36. 36.
    Goebel CV, Čefelin P, Stehlíček J, Šebenda J (1972) Anionic polymerization of caprolactam. XLIII. Relationship between osmometric molecular weight, viscosity, and endgroups of a polymer. J Polym Sci A Polym Chem 10:1411–1427CrossRefGoogle Scholar
  37. 37.
    Finch A, Gardner PJ (1965) Lattice energies of ionic crystals—I: group IIa halides. J Inorg Nucl Chem 27:535–539CrossRefGoogle Scholar
  38. 38.
    Wei H-X, Jasoni RL, Hu J, Li C, Pare PW (2004) Z/E Stereoselective synthesis of β-bromo Baylis-Hillman ketones using MgBr2 as promoter via one-pot three-component reaction. Tetrahedron 60:10233–10237CrossRefGoogle Scholar
  39. 39.
    Zhang X, Li C, Chen W, Wu X (2010) An approach to synthesis of 3-aryl-2-oxazolidinones and in situ “click” assembly of 1,2,3-triazole oxazolidinones. Lett Org Chem 7:226–228CrossRefGoogle Scholar
  40. 40.
    Lindsey JS, Woodford JN (1995) A simple method for preparing magnesium porphyrins. Inorg Chem 34:1063–1069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yulia A. Piskun
    • 1
  • Irina V. Vasilenko
    • 1
  • Ludmila V. Gaponik
    • 1
  • Sergei V. Kostjuk
    • 1
    Email author
  1. 1.Research Institute for Physical Chemical Problems of the Belarusian State UniversityMinskBelarus

Personalised recommendations