Skip to main content
Log in

A new molecularly imprinted polymer prepared by surface imprinting technique for selective adsorption towards kaempferol

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new molecularly imprinted polymer (KAE-MPS/SiO2) with high performance for recognizing kaempferol (KAE) was prepared by adopting the surface molecular imprinting technique with silica nanoparticles modified with 3-methacryloxypropyltrimethoxysilane (MPS) as a carrier material, 2-vinylpridine as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The static adsorption experiments indicated that KAE-MPS/SiO2 had significantly higher adsorption capacity for KAE than its non-imprinted polymers. Scatchard analysis revealed that two classes of binding sites were formed in KAE-MPS/SiO2 with dissociation constants of 0.26 and 2.34 μmol/mL, and the maximum apparent binding capacity was 3.33 and 16.16 μmol/g, respectively. The selectivity coefficients of KAE-MPS/SiO2 for KAE in relation to competition species myricetin and chlorogenic acid were 2.51 and 4.24, respectively, which suggested that KAE-MPS/SiO2 had high recognition selectivity and binding affinity for the template KAE. Dynamic binding study showed that the KAE-MPS/SiO2 had good site accessibility and mass transport for KAE. The KAE-MPS/SiO2 can be reused many times without decreasing their adsorption capacities significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed Engl 34:1812–1832. doi:10.1002/anie.199518121

    Article  CAS  Google Scholar 

  2. Steinke JHG, Sherrington DC, Dunkin IR (1995) Imprinting of synthetic polymers using molecular templates. Adv Polym Sci 123:82–125. doi:10.1007/3-540-58908-23

    Google Scholar 

  3. Brüggemann O, Visnjevski A, Burch R, Patel P (2004) Selective extraction of antioxidants with molecularly imprinted polymers. Anal Chim Acta 504:81–88. doi:10.1016/j.aca.2003.08.033

    Article  Google Scholar 

  4. Vallano PT, Remcho VT (2000) Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents. J Chromatogr A 887:125–135. doi:10.1016/S0021-9673(99)01199-1

    Article  CAS  Google Scholar 

  5. Araki K, Maruyama T, Kamiya N, Goto M (2005) Metal ion-selective membrane prepared by surface molecular imprinting. J Chromatogr B 818:141–145. doi:10.1016/j.jchromb.2004.12.030

    Article  CAS  Google Scholar 

  6. Yano K, Karube I (1999) Molecularly imprinted polymers for biosensor applications. Trends Anal Chem 18:199–204. doi:10.1016/S0165-9936(98)00119-8

    Article  CAS  Google Scholar 

  7. Brüggemann O (2001) Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering. Biomol Eng 18:1–7. doi:10.1016/S1389-0344(01)00076-4

    Article  Google Scholar 

  8. Tada M, Iwasawa Y (2003) Design of molecular-imprinting metal-complex catalysts. J Mol Catal A Chem 199:115–137. doi:10.1016/S1381-1169(03)00029-3

    Article  CAS  Google Scholar 

  9. Alvarez-Lorenzo C, Concheiro A (2004) Molecularly imprinted polymers for drug delivery. J Chromatogr B 804:231–245. doi:10.1016/j.jchromb.2003.12.032

    Article  CAS  Google Scholar 

  10. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (2000) Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloids Surf A 169:259–269. doi:10.1016/S0927-7757(00)00468-4

    Article  CAS  Google Scholar 

  11. Araki K, Goto M, Furusaki S (2002) Enantioselective polymer prepared by surface imprinting technique using a bifunctional molecule. Anal Chim Acta 469:173–181. doi:10.1016/S0003-2670(02)00664-5

    Article  CAS  Google Scholar 

  12. Birlik E, Ersöz A, Açıkkalp E, Denizli A, Say R (2007) Cr(III)-imprinted polymeric beads: sorption and preconcentration studies. J Hazard Mater 140:110–116. doi:10.1016/j.jhazmat.2006.06.141

    Article  CAS  Google Scholar 

  13. Hunnius M, Rufińska A, Maier WF (1999) Selective surface adsorption versus imprinting in amorphous microporous silicas. Microporous Mesoporous Mater 29:389–403. doi:10.1016/S1387-1811(99)00008-6

    Article  CAS  Google Scholar 

  14. Markowitz MA, Kust PR, Klaehn J, Deng G, Gaber BP (2001) Surface-imprinted silica particles: the effects of added organosilanes on catalytic activity. Anal Chim Acta 435:177–185. doi:10.1016/S0003-2670(00)01246-0

    Article  CAS  Google Scholar 

  15. Yilmaz E, Haupt K, Mosbach K (2000) The use of immobilized templates—a new approach in molecular imprinting. Angew Chem Int Ed 39:2115–2118. doi:10.1002/1521-3773(20000616)

    Article  CAS  Google Scholar 

  16. Fang GZ, Tan J, Yan XP (2005) An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol–gel process for selective solid-phase extraction of cadmium (II). Anal Chem 77:1734–1739. doi:10.1021/ac048570v

    Article  CAS  Google Scholar 

  17. Zhang Y, Chen AY, Li M, Chen C, Yao Q (2008) Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148:17–23. doi:10.1016/j.jss.2008.02.036

    Article  CAS  Google Scholar 

  18. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6(9):2544–2553. doi:10.1158/1535-7163.MCT-06-0788

    Article  CAS  Google Scholar 

  19. Tu YC, Lian TW, Yen JH, Chen ZT, Wu MJ (2007) Antiatherogenic effects of kaempferol and rhamnocitrin. J Agric Food Chem 55:9969–9976. doi:10.1021/jf0717788

    Article  CAS  Google Scholar 

  20. López-Sánchez C, Martín-Romero FJ, Sun F, Luis L, Samhan-Arias AK, García-Martínez V, Gutiérrez-Merino C (2007) Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res 1182:123–137. doi:10.1016/j.brainres.2007.08.087

    Article  Google Scholar 

  21. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-Inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:1–10. doi:10.1155/2007/45673

    Article  Google Scholar 

  22. Trivedi R, Kumar S, Kumar A, Siddiqui JA, Swarnkar G, Gupta V, Kendurker A, Dwivedi AK, Romero JR, Chattopadhyay N (2008) Kaempferol has osteogenic effect in ovariectomized adult Sprague-Dawley rats. Mol Cell Endocrinol 289:85–93. doi:10.1016/j.mce.2008.02.027

    Article  CAS  Google Scholar 

  23. Zhu LL, Xu XJ (2003) Selective separation of active inhibitors of epidermal growth factor receptor from Caragana jubata by molecularly imprinted solid-phase extraction. J Chromatogr A 991:151–158. doi:10.1016/S0021-9673(03)00207-3

    Article  CAS  Google Scholar 

  24. He JF, Zhu QH, Deng Q-y (2007) Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochim Acta Part A 67:1297–1305. doi:10.1016/j.saa.2006.09.040

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Junjie Jing (Jiangsu University) for his kindly support for Elemental analysis, UV–Vis and FT-IR measurement of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqiang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Meng, M., Wan, J. et al. A new molecularly imprinted polymer prepared by surface imprinting technique for selective adsorption towards kaempferol. Polym. Bull. 68, 1039–1052 (2012). https://doi.org/10.1007/s00289-011-0605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0605-x

Keywords

Navigation