Skip to main content
Log in

Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

With the aid of co-rotating twin screw extruder, poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatches were fabricated through melt-compounding using a separate feeding and metering technique and their homogeneous dispersion morphologies were confirmed by scanning electron microscopy and transmission electron microscopy. Moreover, the ultimate content of CB in the masterbatches was verified via thermogravimetric analysis method. The non-isothermal crystallization process of pristine PET and PET/CB masterbatch were investigated by differential scanning calorimetry and the different methods such as Jeziorny modified Avrami equation, Ozawa equation, and the method developed by Mo were employed to analyze their non-isothermal crystallization kinetics. The results show that CB particles uniformly dispersed in PET matrix act as heterogeneous nucleating agents, while crystallization activation energy (ΔE) of PET/CB masterbatch is much greater than that of virgin PET according to Kissinger formula, Takhor model, and Augis-Bennett model. Whereas, the results obtained from the above mentioned three methods simultaneously demonstrate the addition of CB greatly increases crystallization temperature and crystallinity and accelerates crystallization rate. The results reveal that crystal growth has little effect on the crystallization rate and crystal nucleation dominates the crystallization process of PET/CB masterbatch containing very high CB loading (20 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Verhpyen O, Dupret F, Legras R (1999) Isothermal and non-isothermal crystallization kinetics of polyethylene terephthalate: mathematical modeling and experimental measurement. Polym Eng Sci 38:1594–1610

    Article  Google Scholar 

  2. Anand KA, Agarwal US, Joseph R (2006) Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer 47:3976–3980

    Article  Google Scholar 

  3. Cai D, Zhang Y, Chen YM (2007) Effect of organic modification of SiO2 on non-isothermal crystallization of PET in PET/SiO2 nanocomposites. Iran Polym J 16:851–859

    CAS  Google Scholar 

  4. Xanthos M, Baltzis BC, Hsu PP (1997) Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate). J Appl Polym Sci 64:1423–1435

    Article  CAS  Google Scholar 

  5. Ge CH, Shi LY, Yang H, Tang SF (2010) Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/barite nanocomposites. Polym Compos 31:1504–1514

    Article  CAS  Google Scholar 

  6. Li XH, Guo WH, Zhou QL, Xu SA, Wu CF (2007) Non-isothermal crystallization kinetics of poly (ethylene terephthalate)/grafted carbon black composite. Polym Bull 59:685–697

    Article  CAS  Google Scholar 

  7. Su ZZ, Guo WH, Liu YJ, Li QY, Wu CF (2009) Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull 62:629–642

    Article  CAS  Google Scholar 

  8. Mucha M, Krolikowski Z (2003) Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim 74:549–557

    Article  CAS  Google Scholar 

  9. Wiemann K, Kaminsky W, Gojny FH, Schulte K (2005) Synthesis and properties of syndiotactic poly(propylene)/carbon nanofiber and nanotube composites prepared by in situ polymerization with metallocene/MAO catalysts. Macromol Chem Phys 206:1472–1478

    Article  CAS  Google Scholar 

  10. Del RC, Ojeda MC, Acosta JL (2000) Carbon black effect on the microstructure of incompatible polymer blends. Eur Polym J 36:1687–1695

    Article  Google Scholar 

  11. Zheng H, Wu JL (2007) Preparation, crystallization, and spinnability of poly(ethylene terephthalate)/silica nanocomposites. J Appl Polym Sci 103:2564–2568

    Article  CAS  Google Scholar 

  12. Jiang ZH, Xiao CF, Wang X, Hu XY (2010) Structure and performance of polyamide-6 membranes prepared by thermally induced phase separation. Chin J Polym Sci 28:721–729

    Article  CAS  Google Scholar 

  13. Dong W, Zhao J, Li CX, Guo ML, Zhao DL, Fan QR (2002) Study of the amorphous phase in semicrystalline poly(ethylene terephthalate) via dynamic mechanical thermal analysis. Polym Bull 49:197–203

    Article  CAS  Google Scholar 

  14. Huang JW, Huang YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci 112:3149–3156

    Google Scholar 

  15. Wu M, Yang GZ, Wang M, Wang WZ, Zhang WD, Feng JC, Liu TX (2008) Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites. Mater Chem Phys 109:547–555

    Article  CAS  Google Scholar 

  16. Yang GZ, Chen XL, Wang WZ, Wang M, Liu TX, Li CZ (2007) Nonisothermal crystallization and melting behavior of a luminescent conjugated polymer, poly(9, 9-dihexylfluorene-alt-co-2, 5-didecyloxy-1, 4-phenylene). J Polym Sci Part B Polym Phys 45:976–987

    Article  CAS  Google Scholar 

  17. Achilias DS, Bikiaris DN, Papastergiadis E, Giliopoulos D, Papageorgiou GZ (2010) Characterization and crystallization kinetics of in situ prepared poly(propylene terephthalate)/SiO2 nanocomposites. Macromol Chem Phys 211:66–79

    Article  CAS  Google Scholar 

  18. Liu XH, Fang JQ, Qi ZN (2001) Study on non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. Polym Mater Sci Eng 17:103–110

    CAS  Google Scholar 

  19. Qin ZZ, Wang YY (1999) Study on non-isothermal crystallization behavior of modified PET. China Synth Fiber Ind 22:21–24

    CAS  Google Scholar 

  20. Xu WB, Ge ML, He PS (2001) Study on non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. Acta Polym Sin 10:585–588

    Google Scholar 

  21. Wang T, Chen L, Chua YC, Lu X (2004) Crystalline morphology and isothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci 94:1381–1388

    Article  Google Scholar 

  22. Mucha M, Marszalek J, Fidrych A (2000) Crystallization of isotactic polypropylene containing carbon black as a filler. Polymer 41:4137–4142

    Article  CAS  Google Scholar 

  23. Bian J, Ye SR, Feng LX (2003) Heterogeneous nucleation on the crystallization poly(ethylene terephthalate). J Polym Sci Part B Polym Phys 41:2135–2144

    Article  CAS  Google Scholar 

  24. Chae DW, Kim BC (2007) Effects of introducing silica particles on the rheological properties and crystallization behavior of poly(ethylene terephthalate). J Mater Sci 42:1238–1244

    Article  CAS  Google Scholar 

  25. Kim JY, Park HS, Kim SH (2007) Multiwall-carbon-nanotube-reinforced poly(ethylene terephthalate) nanocomposites by melt compounding. J Appl Polym Sci 103:1450–1457

    Article  CAS  Google Scholar 

  26. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Science and Technology Supporting Item (2009BAE75B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Jin, J., Xiao, C. et al. Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate). Polym. Bull. 67, 1633–1648 (2011). https://doi.org/10.1007/s00289-011-0555-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0555-3

Keywords

Navigation