Skip to main content
Log in

Synthesis and properties of novel donor–acceptor copolymers based on thiophene and squaraine moieties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two novel donor–acceptor copolymers were synthesized by Sonogashira cross-coupling of alkyl/alkoxy thiophene and dibromo-substituted squaraine moieties. The structures and properties of these polymers were characterized using FT–IR, NMR, UV–Vis, gel permeation chromatography, and cyclic voltammetry. Both copolymers are readily soluble in common organic solvents. The polymer films exhibit broad absorption in the wavelength range from 300 to 1000 nm with the maximum peaks over 750 nm. Electrochemical studies reveal that the band gaps of the polymers range from 1.05 to 1.36 eV. Compared to the alkyl thiophene, the alkoxy thiophene units can effectively lower the band gap and result in significant red-shift absorption spectrum of the resulted polymer. The strong overlap of the solar spectrum and the extremely low band gaps of the polymers suggest that they may be promising candidates for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen JW, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Article  CAS  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CH (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  3. Lindgren LJ, Zhang FL, Andersson M, Barrau S, Hellström S et al (2009) Synthesis, characterization, and devices of a series of alternating copolymers for solar cells. Chem Mater 21:3491–3502

    Article  CAS  Google Scholar 

  4. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  5. Po R, Maggini M, Camaioni N (2010) Polymer solar cells: recent approaches and achievements. J Phys Chem C 114:695–706

    Article  CAS  Google Scholar 

  6. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  CAS  Google Scholar 

  7. Yu CY, Ko BT, Ting C, Chen CP (2009) Two-dimensional regioregular polythiophenes with conjugated side chains for use in organic solar cells. Sol Energy Mater Sol Cells 93:613–620

    Article  CAS  Google Scholar 

  8. Zhou EJ, Wei QS, Yamakawa S, Zhang Y, Tajima K, Yang CH, Hashimoto K (2010) Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device with photocurrent response wavelengths up to 1.1 μm. Macromolecules 43:821–826

    Article  CAS  Google Scholar 

  9. Law KY (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93:449–486

    Article  CAS  Google Scholar 

  10. Chen CT, Marder SR, Cheng LT (1994) Syntheses and linear and nonlinear optical properties of unsymmetrical squaraines with extended conjugation. J Am Chem Soc 116:3117–3118

    Article  CAS  Google Scholar 

  11. Smits ECP, Setayesh S, Anthopoulos TD, Buechel M, Nijssen W, Coehoorn R, Blom PWM, de Boer B, de Leeuw DM (2007) Near-infrared light-emitting ambipolar organic field-effect transistors. Adv Mater 19:734–738

    Article  CAS  Google Scholar 

  12. Piechowski AP, Bird GR, Morel DL, Stogryn EL (1984) Desirable properties of photovoltaic dyes. J Phys Chem 88:934–950

    Article  CAS  Google Scholar 

  13. Yum JH, Walter P, Huber S, Rentsch D, Geiger T, Nuesch F, De Angelis F, Gratzel M, Nazeeruddin MK (2007) Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J Am Chem Soc 129:10320–10321

    Article  CAS  Google Scholar 

  14. Havinga EE, Hoeve WT, Wynberg H (1992) A new class of small band gap organic polymer conductors. Polym Bull 29:119–126

    Article  CAS  Google Scholar 

  15. Eldo J, Ajayaghosh A (2002) New low band gap polymers: control of optical and electronic properties in near infrared absorbing π-conjugated polysquaraines. Chem Mater 14:410–418

    Article  CAS  Google Scholar 

  16. Ajayaghosh A, Eldo J (2001) A new approach toward low optical band gap polysquaraines. Org Lett 3:2595–2598

    Article  CAS  Google Scholar 

  17. Ajayaghosh A (2005) Chemistry of squaraine-derived materials: near-IR dyes, low band gap systems, and cation sensors. Acc Chem Res 38:449–459

    Article  CAS  Google Scholar 

  18. Volker SF, Uemura S, Limpinsel M, Mingebach M, Deibel C, Dyakonov V, Lambert C (2010) Polymeric squaraine dyes as electron donors in bulk heterojunction solar cells. Macromol Chem Phys 211:1098–1108

    Article  Google Scholar 

  19. Chung SJ, Zheng SJ, Odani T, Beverina L et al (2006) Extended squaraine dyes with large two-photon absorption cross-sections. J Am Chem Soc 128:14444–14445

    Article  CAS  Google Scholar 

  20. Egbe DAM, Bader C, Klemm E, Ding LM, Karasz FE, Grummt UW, Birckner E (2003) Influence of the conjugation pattern on the photophysical properties of alkoxy-substituted PE/PV hybrid polymers. Macromolecules 31:9303–9312

    Article  Google Scholar 

  21. Ashraf RS, Klemm E (2005) Synthesis and properties of poly(heteroaryleneethynylene)s consisting of electron-accepting benzothiadiazole/quinoxaline units and electron-donating alkyl thiophene units. J Polym Sci A 43:6445–6454

    Article  CAS  Google Scholar 

  22. Ashraf RS, Gilot J, Janssen RAJ (2010) Fused ring thiophene-based poly(heteroarylene ethynylene)s. Sol Energy Mater Sol Cells. doi:10.1016/j.solmat.2010.05.042

  23. Dieck HA, Heck RF (1975) Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. J Organomet Chem 93:259–263

    Article  CAS  Google Scholar 

  24. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  25. Halkyard CE, Rampey ME, Kloppenburg L, Studer-Martinez SL, Bunz UHF (1998) Evidence of aggregate formation for 2,5-dialkylpoly(p-phenyleneethynylenes) in solution and thin films. Macromolecules 31:8655–8659

    Article  CAS  Google Scholar 

  26. Bredas JL, Silbey R, Boudreaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    Article  CAS  Google Scholar 

  27. Chen H, Cai XR, Xu ZG, Zhang T, Song BF, Li Y, Jiang Q, Xie MG (2008) Novel fluorene-based conjugated copolymers with donor-acceptor structures for photovoltaic applications. Polym Bull 60:581–590

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the key foundation of education ministry of China (20070610053) and the Sichuan Province Foundation for Youths (2008JY0050). The authors also extend their thanks to Analytical & Testing Center of Sichuan University for the NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Tao, F., Meng, K. et al. Synthesis and properties of novel donor–acceptor copolymers based on thiophene and squaraine moieties. Polym. Bull. 68, 349–360 (2012). https://doi.org/10.1007/s00289-011-0542-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0542-8

Keywords

Navigation