Skip to main content
Log in

The influence of temperature and interface strength on the microstructure and performance of sol–gel silica–epoxy nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of silica–epoxy nanocomposites were prepared by hydrolysis of tetraethoxysilane within the organic matrix at different processing temperatures, i.e., 25 and 60 °C. Epoxy matrices reinforced with 2.0–10.0 wt% silica were subsequently crosslinked with an aliphatic diamine hardener to give optically transparent nanocomposite films. Interphase connections between silica networks and organic matrix were established by in situ functionalization of silica with 2.0 wt% γ-aminopropyltriethoxysilane (APTS). The microstructure of silica–epoxy nanocomposites as studied by transmission electron microscopy indicated the formation of very well-matched nanocomposites with homogeneous distribution of silica at relatively higher temperatures and in the presence of APTS. Thermogravimetric and static mechanical analyses confirmed considerable increase in thermal stability, stiffness, and toughness of the modified composite materials as compared to neat epoxy polymer and unmodified silica–epoxy nanocomposites. A slight improvement in the glass transition temperatures was also recorded by differential scanning calorimetry measurements. High temperature of hydrolysis during the in situ sol–gel process not only improved reaction kinetics but also promoted mutual solubility of the two phases, and consequently enhanced the interface strength. In addition, APTS influenced the size and distribution of the inorganic domain and resulted in better performance of the modified silica–epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwon SC, Adachi T, Araki W, Yamaji A (2008) Effect of composing particles of two sizes on mechanical properties of spherical silica–particulate-reinforced epoxy composites. Composites B 39:740–746

    Article  Google Scholar 

  2. Liu YL, Wei WL, Hsu KY, Ho WH (2004) Thermal stability of epoxy–silica composite materials by thermogravimetric analysis. Thermochim Acta 412:139–147

    Article  CAS  Google Scholar 

  3. Chang KC, Lin HF, Lin CY, Kuo TH, Huang HH, Hsu SC, Yeh JM, Yang JC, Yu YH (2008) Effect of amino-modified silica nanoparticles on the corrosion protection properties of epoxy resin–silica hybrid materials. J Nanosci Nanotechnol 8:3040–3049

    Article  CAS  Google Scholar 

  4. Yu D, Liu W, Liu Y (2008) Study on heat resistance and flame retardation of polyfunctional epoxy–silica–phosphorus hybrid resins. Chem Lett 37:1118–1125

    Article  CAS  Google Scholar 

  5. Cardiano P (2008) Hydrophobic properties of new epoxy–silica hybrids. J Appl Polym Sci 108:3380–3387

    Article  CAS  Google Scholar 

  6. Chen S, You B, Zhou S, Wu L (2009) Preparation and characterization of scratch and mar resistant waterborne epoxy/silica nanocomposite clearcoat. J Appl Polym Sci 112:3634–3639

    Article  CAS  Google Scholar 

  7. Davis SR, Brough AR, Atkinson A (2003) Formation of silica/epoxy composite network polymers. J Non-Cryst Solids 315:197–205

    Article  CAS  Google Scholar 

  8. Xiao F, Sun Y, Xiu Y, Wong CP (2007) Formation, thermal and mechanical properties of POSS epoxy composite composites. J Appl Polym Sci 104:2113–2121

    Article  CAS  Google Scholar 

  9. Liu W, Hoa SV, Pugh M (2005) Organoclay-modified high performance epoxy nanocomposites. Compos Sci Technol 65:2364–2373

    Article  CAS  Google Scholar 

  10. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974

    Article  CAS  Google Scholar 

  11. Huang CJ, Fu SY, Zhang YH, Lauke B, Li LF, Ye L (2005) Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics 45:450–454

    Article  CAS  Google Scholar 

  12. Mascia L, Prezzi L, Haworth B (2006) Substantiating the role of phase bicontinuity and interfacial bonding in epoxy–silica nanocomposites. J Mater Sci 41:1145–1155

    Article  CAS  Google Scholar 

  13. Macan J, Brnardic I, Orlic S, Ivankovic H, Ivankovic M (2006) Thermal degradation of epoxy–silica organic–inorganic composite materials. Polym Degrad Stab 91:122–127

    Article  CAS  Google Scholar 

  14. Tarrio-Saavedra J, Lopez-Beceiro J, Naya S, Artiaga R (2008) Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Degrad Stab 93:2133–2137

    Article  CAS  Google Scholar 

  15. Adachi T, Osaki M, Araki W, Kwon SC (2008) Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Mater 56:2101–2109

    Article  CAS  Google Scholar 

  16. Jiao J, Sun X, Pinnavaia TJ (2009) Mesostructured silica for the reinforcement and toughening of rubbery and glassy epoxy polymers. Polymer 50:983–989

    Article  CAS  Google Scholar 

  17. Bugnicourt E, Galy J, Gerard JF, Barthel H (2007) Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites. Polymer 48:1596–1605

    Article  CAS  Google Scholar 

  18. Brus J, Spirkova M, Hlavata D, Strachota A (2004) Self-organisation, structure, dynamic properties, and surface morphology of silica/epoxy films as seen by solid-state NMR, SAXS, and AFM. Macromolecules 37:1346–1357

    Article  CAS  Google Scholar 

  19. Matejka L, Dukh O, Kolarik J (2000) Synthesis and characterization of organic–inorganic nanocomposites based on epoxy resin and 3-glycidoxypropyltrimethoxysilane. Polymer 41:1449–1459

    Article  CAS  Google Scholar 

  20. Lu SR, Zhang HL, Zhao CX, Wang XY (2005) Preparation and characterization of epoxy–silica composite materials by the sol–gel process. J Mater Sci 40:1079–1085

    Article  CAS  Google Scholar 

  21. Matejka L, Plestil J, Dusek K (1998) Structure evolution in epoxy silica nanocomposites: sol–gel process. J Non-Cryst Solids 226:114–121

    Article  CAS  Google Scholar 

  22. Ochi M, Matsumura T (2005) Thermomechanical properties and phase structure of epoxy/silica nanohybrid materials constructed from a linear silicone oligomer. J Polym Sci B 43:1631–1639

    Article  CAS  Google Scholar 

  23. Prezzi L, Mascia L (2005) Network density control in epoxy–silica nanocomposites by selective silane functionalization of precursors. Adv Polym Technol 24:91–102

    Article  CAS  Google Scholar 

  24. Lu SR, Wei C, Yu JH, Yang XW, Jiang YM (2007) Preparation and characterization of epoxy nanocomposites by using PEO-grafted silica particles as modifiers. J Mater Sci 42:6708–6715

    Article  CAS  Google Scholar 

  25. Matejka L, Dusek K, Plestil J, Kriz J, Lednicky F (1999) Formation and structure of the epoxy–silica nanocomposites. Polymer 40:171–181

    Article  CAS  Google Scholar 

  26. Nazir T, Afzal A, Siddiqi HM, Ahmad Z, Dumon M (2010) Thermally and mechanically superior hybrid epoxy–silica polymer films via sol–gel method. Prog Org Coat 69:100–106

    Article  CAS  Google Scholar 

  27. Jackson CL, Bauer BJ, Nakatani AI, Barnes JD (1996) Synthesis of hybrid organic–inorganic materials from interpenetrating polymer network chemistry. Chem Mater 8:727–733

    Article  CAS  Google Scholar 

  28. Ochi M, Takahashi R, Terauchi A (2001) Phase structure and mechanical and adhesion properties of epoxy/silica nanocomposites. Polymer 42:5151–5158

    Article  CAS  Google Scholar 

  29. Gu JW, Zhang QY, Li HC, Tang YS, Kong J, Dang J (2007) Study on preparation of SiO2/epoxy resin hybrid materials by means of sol–gel. Polym Plast Technol Eng 46:1129–1134

    Article  CAS  Google Scholar 

  30. Mahrholz T, Stangle J, Sinapius M (2009) Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite molding processes. Composites A 40:235–243

    Article  Google Scholar 

  31. Sun YY, Zhang ZQ, Moon KS, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci B 42:3849–3858

    Article  CAS  Google Scholar 

  32. Chen C, Justice RS, Schaefer DW, Baur JW (2008) Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties. Polymer 49:3805–3815

    Article  CAS  Google Scholar 

  33. Tjong SC (2006) Structure and mechanical properties of polymer nanocomposites. Mater Sci Eng R 53:73–197

    Article  Google Scholar 

  34. Zhao Q, Hoa SV (2007) Toughening mechanism of epoxy resin with micro/nanoparticles. J Compos Mater 41:201–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the University Research Fund, Quaid-i-Azam University, Islamabad is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira M. Siddiqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazir, T., Afzal, A., Siddiqi, H.M. et al. The influence of temperature and interface strength on the microstructure and performance of sol–gel silica–epoxy nanocomposites. Polym. Bull. 67, 1539–1551 (2011). https://doi.org/10.1007/s00289-011-0495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0495-y

Keywords

Navigation