Abstract
Polymerization of propylene was carried out by using MgCl2-supported TiCl4 catalyst in conjunction with triethylaluminium (TEA) as cocatalyst. The effect of polymerization temperature on polymerization of propylene was investigated. The catalyst activity was influenced by the polymerization temperature significantly and the maximum activity of the catalyst was obtained at 40 °C. With increasing the polymerization temperature, the molecular weight of polypropylene (PP) drastically decreased, while the polydispersity index (PDI) increased. The effect of the two-stepwise polymerization procedure on the molecular weight and molecular weight distribution of PP was studied and the broad PDI of PP was obtained. It was also found that the PDI of PP could be controlled for propylene polymerization through regulation of polymerization temperature. Among the whole experimental cases, the M w of PP was controlled from 14.5 × 104 to 75.2 × 104 g/mol and the PDI could be controlled from 4.7 to 10.2.
This is a preview of subscription content,
to check access.


References
Kissin YV (2008) In: Alkene polymerization reactions with transition metal catalysts, chap 1. Elsevier, Amsterdam, pp 1–34
Kashiwa N (2004) The discovery and progress of MgCl2-supported TiCl4 catalysts. J Polym Sci Polym Chem 42:1–8
Lee DH, Jeong YT (1993) Propene polymerization with Mg(OEt)2-supported TiCl4 catalyst—4 Effects of hydrogen. Eur Polym J 29:883–888
Kissin YV, Rishina LA, Vizen EI (2002) Hydrogen effects in propylene polymerization reactions with titanium-based Ziegler–Natta catalyst. II. Mechanism of the chain transfer reaction. J Polym Sci A 40:1899–1911
Abedi S, Hosseinzadeh M, Kazemzadeh MA, Daftari-Besheli M (2006) Effect of Polymerization time on the molecular weight and molecular weight distribution of polypropylene. J Appl Polym Sci 100:368–371
Kojoh SI, Kioka M, Kashiwa N, Itoh M, Mizuno A (1995) A study of chain-end structures of polypropylene prepared with MgCl2-supported titanium catalyst. Polymer 36:5015–5018
Soga K, Shiono T (1982) Effect of hydrogen on the molecular weight of polypropylene with Ziegler–Natta catalysts. Polym Bull 8:261–268
Keii T, Doi Y, Suzuki E, Tamura M, Murata M, Soga K (1984) Propene polymerization with a magnesium chloride-supported Ziegler catalyst, 2 Molecular weight distribution. Makromol Chem 185:1537–1557
Kojoh SI, Kioka M, Kashiwa N (1999) The influences of cocatalyst on propylene polymerization at high temperature with a MgCl2-supported TiCl4 catalyst system. Eur Polym J 35:751–755
Ahn TO, Hong SC, Kim JH, Lee DH (1998) Control of molecular weight distribution in propylene polymerization with Ziegler–Natta/metallocene catalyst mixtures. J Appl Polym Sci 67:2213–2222
Zucchini U, Checchin G (1983) Control of molecular-weight distribution in polyolefins synthesized with Ziegler–Natta catalytic systems. Adv Polym Sci 51:101–153
Heidemeyer P, Pfeiffer J (2002) Special requirements on compounding technology for bimodal polyolefins and their industrial application. Macromol Symp 181:167–176
Alt FP, Bohm LL, Enderle HF, Berthold J (2001) Bimodal polyethylene-interplay of catalyst and process. Macromol Symp 163:135–144
Lopez-Linares F, Barrios AD, Ortega H, Matos JO, Joskowicz P, Agrifoglio G (2000) Control of molecular weight distribution for polyethylene catalyzed over Ziegler–Natta/metallocene hybrid and mixed catalysts. J Mol Catal A 159:203–213
Zhang HX, Lee YJ, Park JR, Lee DH, Yoon KB (2010) Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler–Natta catalyst: effect of a cocatalyst and hydrogen. J Appl Polym Sci 120:101–108
Li J, Tekie Z, Mizan TI, Morsi BI, Maier EE, Singh CPP (1996) Gas-liquid mass transfer in a slurry reactor operating under olefinic polymerization process conditions. Chem Eng Sci 51:549–559
Sacchi MC, Forlini F, Tritto I, Locatelli P, Morini G, Noristi L, Albizzati E (1996) Polymerization stereochemistry with Ziegler–Natta catalysts containing dialkylpropane diethers: a tool for understanding internal/external donor relationships. Macromolecules 29:3341–3345
Matsuoka H, Liu B, Nakaani H, Nishiyama I, Terano M (2002) Active sites deterioration of MgCl2-supported catalyst induced by the electron donor extraction by alkylaluminium. Polym Int 51:781–784
Yang CB, Hsu CC (1995) Propene polymerization with MgCl2-supported TiCl4/dioctylphthalate catalyst. II. Effect of polymerization conditions on the microstructure of isotactic polymer. J Appl Polym Sci 58:1237–1243
Chadwick JC, Morini G, Balbontin G, Sudmeijer O (1998) Effect of polymerization temperature on the microtacticity of isotactic poly(propylene) prepared using heterogeneous (MgCl2-supported) Ziegler–Natta catalysts. Macromol Chem Phys 199:1873–1878
Kissin YV (2003) Multicenter nature of titanium-based Ziegler–Natta catalysts: comparison of ethylene and propylene polymerization reactions. J Polym Sci A 41:1745–1758
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Hx., Lee, Yj., Park, Jr. et al. Control of molecular weight distribution for polypropylene obtained by commercial Ziegler–Natta catalyst: effect of temperature. Polym. Bull. 67, 1519–1527 (2011). https://doi.org/10.1007/s00289-011-0472-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00289-011-0472-5