Polymer Bulletin

, Volume 67, Issue 8, pp 1443–1454 | Cite as

Polymer-assisted formation of hydrophobized, shape-anisotropic zinc oxide nanoparticles via an inverse emulsion technique

  • Christian Geidel
  • Kathy Schmidtke
  • Markus Klapper
  • Klaus Müllen
Original Paper


A one-step inverse emulsion process using amphiphilic surface-active copolymers for the synthesis of hydrophobized, shape-anisotropic inorganic nanoparticles is presented. While such structures are normally prepared sequentially by particle formation and hydrophobization, we have combined both reactions. This approach is demonstrated exemplarily with zinc oxide (ZnO) nanoparticles. A key issue is the design of amphiphilic copolymers that act as emulsifiers to enable an aggregate-free redispersion of the particles and to stabilize the inverse emulsion for the precipitation in the droplets. In a first approach, the stabilizing as well as the hydrophobizing property of the copolymers are combined with the ability to control the crystallization in one polymer (structure-directing emulsifier—SDE). In a second approach, a mixture of two polymers is applied: an amphiphilic copolymer for hydrophobizing/stabilizing the inorganic nanoparticles and a polar or double hydrophilic polymer that induces the anisotropic growth of the ZnO nanocrystals (structure-directing agents—SDA). Homopolymers and block copolymers, consisting of phosphonic acid groups or propylene oxide groups, were used as SDAs. Typically, hydrophobized shape-anisotropic particles of up to 600 nm in length and with an aspect ratio of 1:4 were obtained.


Zinc oxide Anisotropic shape Nanoparticle Inverse emulsion In situ hydrophobization 

Supplementary material

289_2011_460_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 52 kb)


  1. 1.
    Althues H, Henle J, Kaskel J (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465. doi:10.1039/b608177k CrossRefGoogle Scholar
  2. 2.
    Sarkar A, Mukherjee T, Kapoor S (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C 112:3334–3340. doi:10.1021/jp077603i CrossRefGoogle Scholar
  3. 3.
    Halbach TS, Thomann Y, Mülhaupt R (2008) Boehmite nanorod-reinforced-polyethylenes and ethylene/1-octene thermoplastic elastomer nanocomposites prepared by in situ olefin polymerization and melt compounding. J Polym Sci A 46:2755–2765. doi:10.1002/pola.22608 CrossRefGoogle Scholar
  4. 4.
    Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114. doi:10.1016/S0079-6700(02)00019-9 CrossRefGoogle Scholar
  5. 5.
    Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124. doi:10.1038/nature03968 CrossRefGoogle Scholar
  6. 6.
    Koerner H, Kelley J, George J, Drummy L, Mirau P, Bell NS, Hsu JWP, Vaia R (2009) ZnO nanorod-thermoplastic polyurethane nanocomposites: morphology and shape memory performance. Macromolecules 42:8933–8942. doi:10.1021/ma901671v CrossRefGoogle Scholar
  7. 7.
    Luna-Xavie JL, Guyot A, Bourgeat-Lami E (2002) Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator. J Colloid Interface Sci 250:82–92. doi:10.1006/jcis.2002.8310 CrossRefGoogle Scholar
  8. 8.
    Meinders JM, Busscher HJ (1994) Adsorption and desorption of colloidal particles on glass in a parallel plate flow chamber—influence of ionic strength and shear rate. Colloid Polym Sci 272:478–486. doi:10.1007/BF00659461 CrossRefGoogle Scholar
  9. 9.
    Khrenov V, Klapper M, Koch M, Müllen K (2005) Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromol Chem Phys 206:95–101. doi:10.1002/macp.200400213 CrossRefGoogle Scholar
  10. 10.
    Khrenov V, Schwager F, Klapper M, Koch M, Müllen K (2006) The formation of hydrophobic inorganic nanoparticles in the presence of amphiphilic copolymers. Colloid Polym Sci 284:927–934. doi:10.1007/s00396-006-1468-9 CrossRefGoogle Scholar
  11. 11.
    Klapper M, Clark CG Jr, Müllen K (2008) Application-directed syntheses of surface-functionalized organic and inorganic nanoparticles. Polym Int 57:181–202. doi:10.1002/pi.2301 CrossRefGoogle Scholar
  12. 12.
    Khrenov V, Klapper M, Koch M, Müllen K (2007) Compatibilization of inorganic particles for polymeric nanocomposites Optimization of the size and the compatibilty of ZnO particles. Polym Bull 58:799–807. doi:10.1007/s00289-006-0721-1 CrossRefGoogle Scholar
  13. 13.
    Chiad K, Stelzig SH, Gropeanu RA, Weil T, Klapper M, Müllen K (2009) Isothermal titration calorimetry: a powerful technique to quantify interactions in polymer hybrid systems. Macromolecules 42:7545–7552. doi:10.1021/ma9008912 CrossRefGoogle Scholar
  14. 14.
    Schmidtke K, Lieser G, Klapper M, Müllen K (2010) Complex inorganic/organic core-shell architectures via an inverse emulsion process. Colloid Polym Sci 288:333–339. doi:10.1007/s00396-009-2148-3 CrossRefGoogle Scholar
  15. 15.
    Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439. doi:10.1002/anie.200503821 CrossRefGoogle Scholar
  16. 16.
    O’Reagan B, Schwarthz DT, Zakeeruddin SM, Grätzel M (2000) Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv Mater 12:1263–1267. doi:0935-9648/00/1709-1263 CrossRefGoogle Scholar
  17. 17.
    Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostruct Mater 10:465–477. doi:10.1016/S0965-9773(98)00087-7 CrossRefGoogle Scholar
  18. 18.
    Versloot P, Haasnoot JG, Nieuwenhuizen PJ, Reedijk J, van Duin M, Put J (1997) Sulfur vulcanization of simple model olefins. Part V: double bond isomerization during accelerated sulfur vulcanization as studied by model olefins. Rubber Chem Technol 70:106–119CrossRefGoogle Scholar
  19. 19.
    Tattershall CE, Jerome NP, Budd PM (2001) Oxyethylene/oxybutylene block copolymers as structure-directing agents in the preparation of mesoporous silica. J Mater Chem 11:2979–2984. doi:10.1039/B105484H CrossRefGoogle Scholar
  20. 20.
    Yin Y, Alivisatos PA (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670. doi:10.1038/nature04165 CrossRefGoogle Scholar
  21. 21.
    Bingöl B, Meyer WH, Wagner M, Wegner G (2006) Synthesis, microstructure, and acidity of poly(vinylphosphonic acid). Macromol Rapid Commun 27:1719–1724. doi:10.1002/marc.200600513 CrossRefGoogle Scholar
  22. 22.
    Schurtenberger P, Newman ME (1993) Characterization of biological and environmental particles using static and dynamic light scattering. Lewis Publishers, Boca RatonGoogle Scholar
  23. 23.
    Bao Y, An W, Turner CH, Krishnan KM (2010) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483. doi:10.1021/la902120e CrossRefGoogle Scholar
  24. 24.
    Zhong X, Knoll W (2005) Morphology-controlled large-scale synthesis of ZnO nanocrystals from bulk ZnO. Chem Commun 9:1158–1160. doi:10.1039/b414948c CrossRefGoogle Scholar
  25. 25.
    Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 426:821–826. doi:10.1038/nmat1014 CrossRefGoogle Scholar
  26. 26.
    Frantz R, Durand JO, Granier M, Lanneau GF (2004) Triisopropoxysilyl-functionalized oxide nanoparticles using a di-tert-butyl phosphonate ester as the surface grafting agent. Tetrahedron Lett 45:2935–2937. doi:10.1016/j.tetlet.2004.02.076 CrossRefGoogle Scholar
  27. 27.
    Kihara K, Donnay G (1985) Anharmonic thermal vibrations in ZnO. Can Mineral 23:647–654Google Scholar
  28. 28.
    Cölfen H (2001) Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun 22:219–252. doi:10.1002/1521-3927(20010201) CrossRefGoogle Scholar
  29. 29.
    Burchard W (1983) Static and dynamic light scattering from branched polymers and biopolymers. Adv Polym Sci 48:1–124. doi:10.1007/3-540-12030-0_1 CrossRefGoogle Scholar
  30. 30.
    Lee WL, Cha SH, Kim KH, Kim BW, Lee J (2009) Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride. Solid State Chem 182:3243–3248. doi:10.1016/j.jssc.2009.09.020 CrossRefGoogle Scholar
  31. 31.
    Yang CS, Awschalom DD, Stucky GD (2002) Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems. Chem Mater 14:1277–1284. doi:10.1021/cm011227b CrossRefGoogle Scholar
  32. 32.
    Öner M, Norwig J, Meyer WH, Wegner G (1998) Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer. Chem Mater 10:460–463. doi:10.1021/cm970450z CrossRefGoogle Scholar
  33. 33.
    Taubert A, Glasser G, Palms D (2002) Kinetics and particle formation mechanism of zinc oxide particles in polymer-controlled precipitation from aqueous solution. Langmuir 18:4488–4494. doi:10.1021/la011799a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christian Geidel
    • 1
  • Kathy Schmidtke
    • 1
  • Markus Klapper
    • 1
  • Klaus Müllen
    • 1
  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations