Skip to main content
Log in

Processability enhancement of poly(lactic acid-co-ethylene terephthalate) by blending with poly(ethylene-co-vinyl acetate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(butylene succinate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript


Processability enhancement feasibility of an in-house synthesized poly(lactic acid-co-ethylene terephthalate), PLET, is investigated by blending with commercial poly(ethylene-co-vinyl acetate), EVA, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, and poly(butylene succinate), PBS. The three blend systems are prepared by varying PLET contents, and their properties are characterized. DSC, SEM, and FTIR results indicate that PLET/EVA blends are immiscible, while the corresponding PLET/PBS and PLET/PHBV blends are miscible and partially miscible, respectively. DMA results show that the three blend systems have storage modulus comparable to those of commercial EVA, PHBV, and PBS, when PLET content is kept lower than 50, 25, and 25 wt%, respectively. PLET/EVA blends show higher thermal stability, compared to those of the other two blend systems. Results on degradability tests indicate that PLET/PBS blends show highest hydrolytic degradability, compared to the other two blends, as both blend constituents are associated in the hydrolytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Ki HC, Park OO (2001) Synthesis, characterization and biodegradability of the biodegradable aliphatic-aromatic random copolyesters. Polymer 42:1849–1861. doi:10.1016/S0032-3861(00)00466-3

    Article  CAS  Google Scholar 

  2. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery—poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers. 2. In vitro degradation. Polymer 22:499–504. doi:10.1016/0032-3861(81)90169-5

    Article  CAS  Google Scholar 

  3. Kitotsukuri T, Masuda T, Tsutsumi N, Sakai W, Nagata M (1995) Poly(ethylene terephthalate copolymer)s with smaller amounts of poly(ethylene glycol)s and poly(butylene glycol)s. Polymer 36:2629–2635. doi:10.1016/0032-3861(95)91211-O

    Article  Google Scholar 

  4. Nagata M, Kitotsukuri T, Minami S, Tsutsumi N, Sakai W (1997) Enzymatic degradation of poly(ethylene terephthalate) copolymers with aliphatic dicarboxylic acids and/or poly(ethylene glycol). Eur Polym J 10:1701–1705. doi:10.1016/S0014-3057(97)00063-3

    Article  Google Scholar 

  5. Witt U, Muller RJ, Decker WD (1995) Biodegradation of polyester copolymers containing aromatic compounds. J Macromol Sci Pure Appl Chem A32:851–856. doi:10.1080/10601329508010296

    CAS  Google Scholar 

  6. Witt U, Muller RJ, Decker WD (1997) Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J Environ Polym Degrad 5:81–89

    Article  CAS  Google Scholar 

  7. Marten E, Muller RJ, Deckwer WD (2005) Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic–aromatic copolyesters. Polym Degrad Stab 88:371–381. doi:10.1016/j.polymdegradstab.2004.12.001

    Article  CAS  Google Scholar 

  8. Valientea N, Lalota T, Brigodiota M, Marechal E (1998) Enzymatic hydrolysis of phthalic unit containing copolyesters as a potential tool for block length determination. Polym Degrad Stab 61:409–415. doi:10.1016/S0141-3910(97)00226-7

    Article  Google Scholar 

  9. Witt U, Einig T, Yamamoto M, Kleeberg I, Decker WD, Muller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299. doi:10.1016/S0045-6535(00)00162-4

    Article  CAS  Google Scholar 

  10. Opaprakasit M, Petchsuk A, Opapraksit P, Chongprakobkit S (2009) Effect of synthesis conditions on chemical structures and physical properties of copolyesters from lactic acid, ethylene glycol and dimethyl terephthalate. eXPRESS Polym Lett 3:458–468. doi:10.3144/expresspolymlett.2009.56

    Article  CAS  Google Scholar 

  11. Namkajorn M, Petchsuk A, Opaprakasit M, Opaprakasit P (2010) Synthesis and characterizations of degradable aliphatic–aromatic copolyesters from lactic acid, dimethyl terephthalate and diol: effects of diol type and monomer feed ratio. eXPRESS Polym Lett 4:415–422. doi:10.3144/expresspolymlett.2010.52

    Article  CAS  Google Scholar 

  12. Yoon JS, Oh SH, Kim MN, Chin IJ, Kim YH (1999) Thermal and mechanical properties of poly(l-lactide)-poly(ethylene-co-vinyl acetate) blends. Polymer 40:2303–2312. doi:10.1016/S0032-3861(98)00463-7

    Article  CAS  Google Scholar 

  13. Yoon JS, Oh SH, Kim MN (1999) Compatibility of poly(3-hydroxybutyrate)/poly(ethylene-co-vinyl acetate) blends. Polymer 39:2479–2487. doi:10.1016/S0032-3861(97)00556-9

    Article  Google Scholar 

  14. Grzebieniak K (1996) Copolyesters of ethylene terephthalate and lactic acid susceptible to hydrolytic degradation. Fibres Text East Eur 4:34–37

    CAS  Google Scholar 

  15. Grzebieniak K, Ratajska M, Strobin G (2001) Estimation of hydrolysis and biodegradation processes in ethylene terephthalate and lactic acid copolymers. Fibres Text East Eur 9:61–65

    CAS  Google Scholar 

  16. Olewnik E, Czerwinski W, Nowaczyk J, Sepulchre MO, Tessier M, Salhi S, Fradet A (2007) Synthesis and structural study of copolymers of l-lactic acid and bis(2-hydroxyethyl terephthalate). Eur Polym J 43:1009–1019. doi:10.1016/j.eurpolymj.2006.11.025

    Article  CAS  Google Scholar 

  17. Olewnik E, Czerwinski W, Nowaczyk J (2007) Hydrolytic degradation of copolymers based on l-lactic acid and bis-2-hydroxyethyl terephthalate. Polym Degrad Stab 92:24–31. doi:10.1016/j.polymdegradstab.2006.10.003

    Article  CAS  Google Scholar 

  18. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. In: Albertsson A-C (ed) Degradable aliphatic polyesters. Advances in polymer science, vol 157. Springer, New York, pp 113–138

    Chapter  Google Scholar 

  19. Socrates G (1994) Infrared characteristic group frequencies tables and charts. John Wiley & Sons, Chichester

    Google Scholar 

  20. Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Two-dimensional Fourier transform infrared correlation spectroscopy employing carbonyl overtones. Appl Spectrosc 61:1352–1358. doi:10.1366/000370207783292235

    Article  CAS  Google Scholar 

  21. Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends: practical guides for predicting & designing miscible polymer mixtures. Technomic Publishing Co., Lancaster, PA

    Google Scholar 

Download references


Financial supports from the research grants for development of new faculty staffs, Chulalongkorn University to M.O., a research grant (RSA5280029) from The Thailand Research Fund (TRF) and The Commission on Higher Education (CHE) to P.O., and the graduate thesis grant to W.K. are gratefully acknowledged. M.O. thanks a partial support from Research Unit of Advanced Ceramic and Polymeric Materials, National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mantana Opaprakasit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opaprakasit, M., Kongtong, W., Petchsuk, A. et al. Processability enhancement of poly(lactic acid-co-ethylene terephthalate) by blending with poly(ethylene-co-vinyl acetate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(butylene succinate). Polym. Bull. 67, 275–290 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: