Skip to main content

Advertisement

Log in

Structural characterization of chitosan and oxidized carboxymethyl cellulose based freeze-dried films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The conversion of dihydroxyl groups to dialdehyde by periodate oxidation is a useful method widely used in derivatization of cellulose. Periodate oxidation is a highly specific reaction to convert 1,2-dihydroxyl groups to paired aldehyde groups without significant side reactions. This reaction cleaves the C2–C3 bond; the resulting compound is the dialdehyde cellulose (DAC). These aldehyde groups of carboxymethyl cellulose interact with amino group of chitosan and their interaction results in the formation Schiff’s base with enhanced properties of both the polymers, i.e., of chitosan and carboxymethyl cellulose. Interaction of chitosan and oxidized carboxymethyl cellulose (OCMC) has been carried out with three combinations, i.e., 5, 10, and 15 wt% OCMC with rest of chitosan in 2% lactic acid solution. This new compound is covalently crosslinked which has been analyzed by various techniques like FTIR, TGA, XRD, and SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olabisi O, Robeson LM, Sham MT (1979) Polymer–polymer miscibility. Academic Press, New York

    Google Scholar 

  2. Krause S (1978) Polymer–polymer compatibility in polymer blends. In: Paul DR, Newman S (eds) Polymer blends, vol 1. Academic press, New York

  3. Leathers TD, Steinbuchel A, Rhee SK (2005) Polysaccharides and polyamides in the food industry. Properties, production, and patent, Chap. 11. Wiley-VCH, Weinheim, pp 387–421

  4. Chee KK (1990) Determination of polymer–polymer miscibility by viscometry. Eur Polym J 26:423–426

    Article  CAS  Google Scholar 

  5. Sun Z, Wang W, Feng Z (1992) Criterion of polymer–polymer miscibility determined by viscometer. Eur Polym J 51:1259

    Article  Google Scholar 

  6. Muzzarelli RA (1977) Chitin. Pergamon, New York

    Google Scholar 

  7. Muzzarelli RAA, Jeuniauk C, Gooday GW (1986) Chitin in nature and technology. Plenum, New York

    Book  Google Scholar 

  8. Sjak-Braek G, Anthonsen T, Sandford P (1992) In: Advances in chitin and chitosan. Elsevier, New York

  9. Brine CJ, Sandford PA, Zikakis JP (1992) Advances in chitin and chitosan. Elsevier, New York

    Book  Google Scholar 

  10. Nicol S (1991) Life after death for empty shells. New Scientist 129:46–48

    CAS  Google Scholar 

  11. Wu ACM, Bough WA (1978) In: Muzzarelli RAA, Pariser ER (eds) Proceedings of 1st international conference on chitin/chitosan. MIT-SG, Cambridge, p 88

  12. Sannan T, Kurita K, Iwakura Y (1976) Studies on chitosan. 2. Effect of deacetylation on solubility. Makromol Chem 177:3589–3600

    Article  CAS  Google Scholar 

  13. Rinaudo MA, Domard A (1989) In: Sjak-Braek G, Anthonsen T, Sandford P (eds) Advances in chitin and chitosan. Elsevier, New York, p 77

  14. Dutkiewicz J, Tuora M (1992) In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier, New York, p. 496

  15. Rahn K, Heinze T (1998) New cellulosic polymers by subsequent modification of 2,3-dialdehyde cellulose. Cell Chem Technol 32:173

    CAS  Google Scholar 

  16. Kim UJ, Kuga S, Wada M, Okano T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488

    Article  CAS  Google Scholar 

  17. Gal’braikh LS, Rogovin ZA (1971) In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, 2nd edn, vol 5. Wiley-Interscience, New York, p 893

  18. Nevell TP (1963) In: Whistler RL (eds) Methods in carbohydrate chemistry, vol 3. Academic: New York, p 164

  19. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxyl cellulose combined with various metal ions. J Appl Polym Sci 29:2289

    Article  CAS  Google Scholar 

  20. Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34:2628

    Article  CAS  Google Scholar 

  21. Schacht E et al (1997) Thermal and rheological properties of methacrylamide modified polymer. React Funct Polym 33:109

    Article  CAS  Google Scholar 

  22. Uraz I, Gu¨ner A (1997) Denaturing agents used: urea. Carbohydr Polym 34:127

    Article  CAS  Google Scholar 

  23. Cremonesi P, Focher B, Angiuro LD (1972) Cell Chem Technol 6:145

    CAS  Google Scholar 

  24. Cremonesi P, Focher B, Angiuro LD (1971) Cell Chem Technol 6:27

    Google Scholar 

  25. Maekawa E, Koshijima T (1991) Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses. J Appl Polym Sci 42:169

    Article  CAS  Google Scholar 

  26. Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77:25

    Article  CAS  Google Scholar 

  27. Rowen JW, Forziati FH, Reeves RE (1951) J Am Chem Soc 73:4484

    Article  CAS  Google Scholar 

  28. Spedding H (1960) Infrared spectra of periodate-oxidized cellulose. J Chem Soc 628:3147–3152

    Google Scholar 

  29. Kuniak L et al (1969) Changes in the fine structure of cellulose upon oxidation. Vensk Papperstidn 72:205

    CAS  Google Scholar 

  30. de Vasconcelos CL, Bezerril PM, dos Santos DES, Dantas TNC, Pereira MR, Fonseca JLC (2006) Biomacromolecules 7:1245–1252

    Article  Google Scholar 

  31. Jiang H, Liang J, Grang JT, Su W, Bunning TJ, Cooper TM, Adams WW (1997) Macromol Chem Phys 198:1561–1578

    Article  CAS  Google Scholar 

  32. Wan Y et al (2006) Biodegradable polylactide/chitosan blend membranes. Biomacromolecules 7:1362–1372

    Article  CAS  Google Scholar 

  33. Duan B et al (2004) Electrospinning of chitosan solution in acetic acid solution with poly (ethylene oxide). J Biomater Sci Polym 15:797–811

    Article  CAS  Google Scholar 

  34. Majdanac L, Cosic D, Nesovic N (2005) J Therm Anal Calorim 38:907

    Google Scholar 

  35. Milosavljevic I, Snuberg EM (1995) Ind Eng Chem Res 34:1081

    Article  CAS  Google Scholar 

  36. Kokot S, Pingyu Y (1995) Anal Chim Acta 304:297

    Article  CAS  Google Scholar 

  37. Antal MJ, Várhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703

    Article  CAS  Google Scholar 

  38. Lowary TL, Richards GN (1990) Mechanisms of pyrolysis of polysaccharides: cellobiitol as a model for cellulose. Carbohydr Res 198:79–89

    Article  CAS  Google Scholar 

  39. Várhegyi G et al (1993) Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism. J Anal Appl Pyrolysis 26:159

    Article  Google Scholar 

  40. Princi E et al (2005) Thermal characterization of cellulose based materials. J Therm Anal Calorim 80:369

    Article  CAS  Google Scholar 

  41. Yin YJ et al (2000) Preparation and characterization of hydroxyapatite/chitosan-gelatin network composite. J Appl Polym Sci 77:2929–2938

    Article  CAS  Google Scholar 

  42. Pozzo AD et al (2000) Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans. Carbohydr Polym 42:201–206

    Google Scholar 

  43. Risbud MV et al (2000) pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    Article  CAS  Google Scholar 

  44. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75

    Article  CAS  Google Scholar 

  45. Thacharodi D, Rao KP (1993) Propanolol hydrochloride release behaviour of crosslinked chitosan membranes. J Chem Technol Biotechnol 58:177–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiqa Ikram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teotia, A., Ikram, S. & Gupta, B. Structural characterization of chitosan and oxidized carboxymethyl cellulose based freeze-dried films. Polym. Bull. 69, 175–188 (2012). https://doi.org/10.1007/s00289-010-0415-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0415-6

Keywords

Navigation