Polymer Bulletin

, Volume 67, Issue 3, pp 383–399 | Cite as

Polymerization of ethylene to branched poly(ethylene)s using ansa5-monofluorenyl cyclohexanolato zirconium(IV) complex/methylaluminoxane

  • A. RajeshEmail author
  • S. Sivaram
Original Paper


ansa5-Monofluorenyl cyclohexanolato zirconium complex 3 was shown to be active for the polymerization of ethylene when activated with methylaluminoxane (MAO) at 5 bar. Up to a polymerization temperature of 40 °C, 3/MAO resulted in linear poly(ethylene)s with saturated chain ends. However, at polymerization temperatures of 60, 80, and 100 °C, a mixture of branched poly(ethylene)s, linear α-olefins and long chain alkanes was obtained. The poly(ethylene)s produced at 80 and 100 °C exhibited a bimodal molecular weight distribution indicative of multiple active species. Very high molecular weight (Mv > 5 × 105) linear poly(ethylene)s were obtained using 3/MAO at 25 °C.


ansa-Monofluorenyl complex Methyl aluminoxane Ethylene polymerization Branched poly(ethylene)s Bimodal MWD 



AR thanks the Council for Scientific and Industrial Research, New Delhi, India for Junior and Senior Research Fellowships.


  1. 1.
    Kaminsky W, Arndt M (1997) Metallocenes for polymer catalysis. Adv Polym Sci 127:144–187Google Scholar
  2. 2.
    Bochmann M (1996) Cationic group 4 metallocene complexes and their role in polymerization catalysis: the chemistry of well-defined Ziegler catalysts. J Chem Soc; Dalton Trans 255–270Google Scholar
  3. 3.
    Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed Engl 34:1143–1170CrossRefGoogle Scholar
  4. 4.
    Marks TJ (1992) Surface-bound metal hydrocarbyls. Organometallic connection between heterogeneous and homogeneous catalysis. Acc Chem Res 25:57–65CrossRefGoogle Scholar
  5. 5.
    Stevens JC, Timmers FJ, Wilson DR, Schmidt GF, Nickias PN, Rosen RK, Knight GW, Lai S-Y (1991) Constrained geometry addition polymerization catalysts, processes for their preparation, precursors therefore, methods of use and novel polymers formed therewith. European Patent 0416815, Dow Chemical CompanyGoogle Scholar
  6. 6.
    Stevens JC, Neithamer DR (1991) Metal complex compounds, process for preparation and method of use. European Patent 0418044, Dow Chemical CompanyGoogle Scholar
  7. 7.
    Canich JAM (1991) Process for producing crystalline poly α-olefins with a monocyclopentadienyl transition metal catalyst system. US Patent 5026798, ExxonGoogle Scholar
  8. 8.
    Canich JAM, Licciardi GF (1991) Mono Cp heteroatom group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization. US Patent 5057475, ExxonGoogle Scholar
  9. 9.
    Canich JAM (1991) Olefin polymerization catalysts. European Patent 0420436, ExxonGoogle Scholar
  10. 10.
    McKnight AL, Waymouth RM (1998) Group 4 ansa-cyclopentadienyl amido catalysts for olefin polymerization. Chem Rev 98:2587–2598CrossRefGoogle Scholar
  11. 11.
    Nomura K, Okumara H, Komatsu T, Naga N, Imanishi YJ (2002) Effect of ligand in ethylene/styrene copolymerization by [Me2Si(C5Me4)(NR)TiCl2 (R = tert-Bu, cyclohexyl) and (1,3-Me2C5H3)TiCl2(O-2, 6-iPrC6H3)-MAO catalyst system. J Mol Catal A 190:225–234CrossRefGoogle Scholar
  12. 12.
    Noh S-K, Lee J, Lee D-H (2003) Synthesis of dinuclear titanium constrained geometry complexes with polymethylene bridges and their copolymerization properties. J Organomet Chem 667:53–60CrossRefGoogle Scholar
  13. 13.
    Noh SK, Lee M, Kum DH, Kim K, Lyoo WS, Lee D-H (2004) Studies on ethylene-styrene copolymerization with dinuclear constrained geometry complexes with methyl substitution at the five-membered ring in indenyl of [Ti η5: η1–C9H5SiMe2NCMe3]2 [CH2]n. J Polym Sci A 42:1712–1723CrossRefGoogle Scholar
  14. 14.
    Skeril R, Sindelar P, Salajka Z, Varga V, Cisarova I, Pinkas J, Horacek M, Mach K (2004) Copolymerization of ethene with styrene using CGC catalysts: the effect of the cyclopentadienyl ligand substitution on the catalyst activity and copolymer structure. J Mol Catal A 224:97–103CrossRefGoogle Scholar
  15. 15.
    Martinez S, Exposito MT, Ramos J, Cruz V, Martinez MC, Lopez M, Munoz-Escalona A, Martinez-Salazar J (2005) An experimental and computational evaluation of ethylene/styrene copolymerization with a homogeneous single-site titanium(IV)-constrained geometry catalyst. J Polym Sci A 43:711–725CrossRefGoogle Scholar
  16. 16.
    Xu G (1998) Copolymerization of ethylene with styrene catalyzed by the [η15-tert-butyl(dimethylfluorenylsilyl)amido]methyltitanium cation. Macromolecules 31:2395–2402CrossRefGoogle Scholar
  17. 17.
    Schwerdtfeger ED, Irwin LJ, Miller SA (2008) Highly branched polyethylene from ethylene alone via a single zirconium-based catalyst. Macromolecules 41:1080–1086CrossRefGoogle Scholar
  18. 18.
    Chen Y-X, Fu P-F, Stern CL, Marks TJ (1997) A novel phenolate “constrained geometry” catalyst system. Efficient synthesis, structural characterization and α-olefin polymerization catalysis. Organometallics 16:5958–5963CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Mu Y, Lu C, Li G, Xu J, Zhang Y, Zhu D, Feng S (2004) Constrained geometry tetremethylcyclopentadienyl-phenoxytitanium dichlorides: template synthesis, structures and catalytic properties for ethylene polymerization. Organometallics 23:540–554CrossRefGoogle Scholar
  20. 20.
    Senda T, Hanaoka H, Nakahara S, Oda Y, Tsurugi H, Mashima T (2010) Rational design of silicon-bridged fluorenyl-phenoxy group 4 metal complexes as catalysts for producing high molecular weight copolymers of ethylene and 1-hexene at elevated temperature. Macromolecules 43:2299–2306CrossRefGoogle Scholar
  21. 21.
    Nomura K, Liu J, Padmanabhan S, Kitiyanan B (2007) Nonbridged half-metallocenes containing anionic ancillary donor ligands: new promising candidates as catalysts for precise olefin polymerization. J Mol Catal A 267:1–29CrossRefGoogle Scholar
  22. 22.
    Gielens EECG, Tiesnitsch JY, Hessen B, Teuben JH (1998) Titanium hydrocarbyl complexes with a linked cyclopentadienyl alkoxide ancillary ligand. Participation of the ligand in an unusual activation of a (trimethysilyl) methyl group. Organometallics 17:1652–1654CrossRefGoogle Scholar
  23. 23.
    Rieger B (1991) Preparation and some properties of chiral ansa-(mono-η5-fluorenyl)zirconium (IV) complexes. J Organomet Chem 420:C17–C20CrossRefGoogle Scholar
  24. 24.
    Saito J, Tohi Y, Matsukawa N, Mitani M, Fujita T (2005) Selective synthesis of Al-terminated polyethylenes using a bis(phenoxy-imine)zirconium complex with methylaluminoxane. Macromolecules 38:4955–4957CrossRefGoogle Scholar
  25. 25.
    Galland GB, Quijada R, Rojas R, Bazan GC, Komon ZJA (2002) NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules 35:339–345CrossRefGoogle Scholar
  26. 26.
    Okuda J, Schattenmann FJ, Wocadlo S, Massa W (1995) Synthesis and characterization of zirconium complexes containing a linked amido-fluorenyl ligand. Organometallics 14:789–795CrossRefGoogle Scholar
  27. 27.
    Hill MS, Hitchcock PB (2002) [Me2Al(THF)2] + [{Me2Si(NDipp)2}2Zr2Cl5]-(Dipp = 2,6-Disiopropylphenyl), an unusual zirconium/aluminum ion pair containing a THF-stabilized dimethyl aluminum cation. Organometallics 21:3258–3262CrossRefGoogle Scholar
  28. 28.
    Usami T, Takayama S (1984) Fine branching structure in high pressure, low-density polyethylenes by 50.10 MHz carbon-13 NMR analysis. Macromolecules 17:1756–1761CrossRefGoogle Scholar
  29. 29.
    Zhu F, Fang Y, Chen H, Lin S (2000) Synthesis and characterization of branched polyethylene by ethylene homopolymerization with monotitanocene and modified methylaluminoxane. Macromolecules 33:5006–5010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Polymer Science and EngineeringNational Chemical LaboratoryPuneIndia

Personalised recommendations