Skip to main content
Log in

Removal of cationic dyes from aqueous solutions with poly (N-isopropylacrylamide-co-itaconic acid) hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, N-isopropylacrylamide-based temperature and pH-sensitive hydrogels were synthesized by free radical polymerization for removal of cationic dyes from aqueous solutions. For this purpose, N-isopropylacrylamide was copolymerized with various amounts of sodium salt of itaconic acid in the presence of crosslinking agent (N,N-methylene bisacrylamide). The chemical structures of hydrogels were characterized by FT-IR analysis. In order to investigate swelling properties of the hydrogels, water absorption (swelling) and shrinking (deswelling) kinetics, the equilibrium swelling ratios in water and different pH buffer solutions, and the temperature dependent swelling ratios were determined. Then, their adsorption properties such as adsorption capacities, kinetics, isotherms were investigated in case of their usage in removal of Safranine T (ST), Brilliant Green (BG), and Brilliant Cresyl Blue (BCB) aqueous solutions. According to adsorbed dye amount, the adsorption capacities are followed the order BG > ST ≅ BCB. In addition, the results indicated that the pseudo-second-order kinetic model fitted better than the data obtained from pseudo-first-order model for the adsorption of all dyes onto hydrogels. Furthermore, according to effect of the initial dye concentration findings, it is concluded that, Freundlich isotherm explains the adsorption better than Langmuir isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Deliv Rev 54(1):149–161

    Article  CAS  Google Scholar 

  2. Duran S, Şolpan D, Güven O (1999) Synthesis and characterization of acrylamide–acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instrum Methods Phys Res B Beam Instr Mater At 151:196–199

    Article  CAS  Google Scholar 

  3. Escobar JL, Garcia D, Valerino A, Zaldivar D, Hernaez E, Katime I (2004) Cephazoline sodium release from poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) hydrogels. J Appl Polym Sci 91(6):3433–3437

    Article  CAS  Google Scholar 

  4. Akkaya MC, Emik S, Güçlü G, Iyim TB, Özgümüş S (2009) Removal of basic dyes from aqueous solutions by crosslinked acrylic acid/acrylamidopropane sulfonic acid hydrogels. J Appl Polym Sci 144(2):1150–1159

    Article  Google Scholar 

  5. Bernardo MV, Blanco MD, Olmo R, Teijon JM (2002) Delivery of bupivacaine included in poly(acrylamide-co-monomethyl itaconate) hydrogels as a function of the pH swelling medium. J Appl Polym Sci 86:327–334

    Article  CAS  Google Scholar 

  6. Peppas NA, Bures P, Leobondung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  Google Scholar 

  7. Brannon-Peppas L, Peppas NA (1991) Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci 46:715–722

    Article  CAS  Google Scholar 

  8. Scranton AB, Rangarajan B, Klier J (1995) Biomedical applications of polyelectrolytes. Adv Polym Sci 122:1–54

    CAS  Google Scholar 

  9. Carillo F, Defays B, Colom X (2008) Surface modification of lyocell fibres by graft copolymerization of thermo-sensitive poly-N-isopropylacrylamide. Eur Polym J 44:4020–4028

    Article  Google Scholar 

  10. Okamura H, Maruyama T, Masuda S, Minagava K, Mori T, Tanaka M (2002) A novel thermosensitive poly(methyl 2-acetamidoacrylate). J Polym Res 9(1):17–21

    Article  CAS  Google Scholar 

  11. Lee WF, Hsu CH (1997) Thermoreversible hydrogels VI: swelling behavior of the (N-isopropylacrylamide-co-diethyl methyl methacryloyloxyethyl ammonium iodide) copolymeric hydrogels in aqueous salt solutions. J Polym Res 4(4):233–241

    Article  CAS  Google Scholar 

  12. Lee WF, Yuan WY (2000) Thermoreversible hydrogels XIII: synthesis and swelling behaviors of [N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate-co-N, N-dimethyl(acrylamido propyl) ammonium propane sulfonate] copolymeric hydrogels. J Polym Res 7(1):29–40

    Article  CAS  Google Scholar 

  13. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  14. Karadağ E, Saraydın D, Güven O (1997) Cationic dye adsorption by acrylamide/itaconic acid hydrogels in aqueous solution. Polym Adv Tech 8:574–578

    Article  Google Scholar 

  15. Ju XJ, Zhang SB, Zhou MY, Xie R, Yang L, Chu LY (2009) Novel heavy-metal adsorption material: ion-recognition p(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167:114–118

    Article  CAS  Google Scholar 

  16. Zayat M, Garcia-Parejo P, Levy D (2007) Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem Soc Rev 36:1270–1281

    Article  CAS  Google Scholar 

  17. Alarcon CDH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  CAS  Google Scholar 

  18. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  19. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Article  CAS  Google Scholar 

  20. Hegazy ESA, Abdel-Rehim HA, Kamal H, Abdel-Aal S (2005) Radiation synthesis of stimuli-responsive membranes and hydrogels for waste treatment and separation processes. Final report of a coordinated research project IAEA-TECDOC-1465, pp 17–40

  21. Krusic MK, Filipovic J (2006) Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid. Polymer 47:148–155

    Article  CAS  Google Scholar 

  22. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Int J Pharm 278:343–351

    Article  Google Scholar 

  23. Katime I, Valderruten N, Quintana JR (2001) Controlled release of aminophylline from poly (N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Int 50:869–874

    Article  CAS  Google Scholar 

  24. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  25. Gong R, Sun Y, Chen J, Liu H, Yang C (2005) Effect of chemical modification on dye adsorption capacity of peanut hull. Dyes Pigm 67(3):175–181

    Article  CAS  Google Scholar 

  26. Panswed J, Wongchaisuwan S (1986) Mechanism of dye wastewater colour removal by magnesium carbonate-hydrated basic. Water Sci Technol 18:139–144

    Google Scholar 

  27. Malik PK, Saha SK (2003) Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep Purif Technol 31:241–250

    Article  CAS  Google Scholar 

  28. Koch M, Yediler A, Lienert D, Insel G, Kettrup A (2002) Ozonation of hydrolysed azo reactive yellow 84. Chemosphere 46:109–113

    Article  CAS  Google Scholar 

  29. Ciardelli G, Corsi L, Marucci M (2000) Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl 31(2):189–197

    Article  Google Scholar 

  30. Venkata RB, Sastray CA (1987) Removal of dyes from water and wastewater by adsorption. Indian J Environ Prot 7:363–376

    Google Scholar 

  31. Huang MR, Li S, Li XG (2010) Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions. J Phys Chem B 114:3534–3542

    Article  CAS  Google Scholar 

  32. Li XG, Feng H, Huang MR (2009) Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents. Chem Eur J 15:4573–4581

    Article  CAS  Google Scholar 

  33. Li XG, Ma XL, Sun J, Huang MR (2009) Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25:1675–1684

    Article  CAS  Google Scholar 

  34. Emik S (2003) Stimuli sensitive hydrogels. M.S. Thesis, Institute of Science, İstanbul University

  35. Makino K, Agata H, Ohshima H (2000) Dependence of temperature-sensitivity of poly(N-isopropyl acryl amide-co-acrylic acid) hydrogel microspheres upon their size. J Colloid Interface Sci 230:128–134

    Article  CAS  Google Scholar 

  36. Samra BK, Galaev IY, Mattiasson B (2000) Thermosensitive reversibly cross-linking gels with a shape memory. Angew Chem Int Ed 13:2364–2367

    Article  Google Scholar 

  37. Yıldız B, Işık B, Kış M (2001) Synthesis of thermoresponsive N-isopropylacrylamide-N-hydroxymethylacrylamide hydogels by redox polymerization. Polymer 42:2521–2529

    Article  Google Scholar 

  38. Ling Y, Lu M (2009) Thermo and pH dual responsive poly(N-isopropylacrylamide-co-itaconic acid) hydrogels prepared in aqueous NaCl solutions and their characterization. J Polym Res 16:29–37

    Article  CAS  Google Scholar 

  39. Bellamy LJ (1975) The infra-red spectra of complex molecules, 3rd edn. Chapman & Hall, London

    Google Scholar 

  40. Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170:137–149

    Article  CAS  Google Scholar 

  41. Seker F, Ellis AB (1998) Correlation of chemical structure and swelling behavior in N-alkylacrylamide hydrogels. J Polym Sci A Polym Chem 36(12):2095–2102

    Article  CAS  Google Scholar 

  42. Emik S, Gürdağ G (2005) Synthesis and swelling behavior of thermosensitive poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate) and poly(N-isopropyl acrylamide-co-sodium-2-acrylamido-2-methyl propane sulfonate-co-glycidylmethacrylate) hydrogels. J Appl Polym Sci 100:428–438

    Article  Google Scholar 

  43. Wu C (1998) A comparison between the coil-to-globule transition of linear chains and the volume phase transition of spherical microgels. Polymer 39:4609–4619

    Article  CAS  Google Scholar 

  44. Wu C, Zhou SQ (1997) Volume phase transition of swollen gels: discontinuous or continuous? Macromolecules 30:574–576

    Article  CAS  Google Scholar 

  45. Hirose Y, Hirokawa Y, Tanaka T (1987) Phase transition of submicron gel beads. Macromolecules 20:1342–1344

    Article  CAS  Google Scholar 

  46. Özcan AS, Özcan A (2000) Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J Colloid Interface Sci 276:39–46

    Article  Google Scholar 

  47. Zeynep E, Filiz NA (2006) Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination 194:1–10

    Article  Google Scholar 

  48. Chen H, Wang A (2009) Adsorption characteristics of Cu(II) from aqueous solutions onto poly(acrylamide)/attapulgite composite. J Hazard Mater 165:223–231

    Article  CAS  Google Scholar 

  49. Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2009) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull. doi:10.1007/s00289-009-0217-x

  50. McKay G, Ho YS (1999) The sorption of lead (II) on peat. Water Res 33:578–584

    Article  Google Scholar 

  51. McKay G, Ho YS (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  52. İyim TB, Acar I, Özgümüş S (2008) Removal of basic dyes from aqueous solutions with sulfonated phenol–formaldehyde resin. J Appl Polym Sci 109:2774–2780

    Article  Google Scholar 

  53. Liu FQ, Chen JL, Li AM, Fei ZH, Zhu ZL, Zhang QX (2003) Adsorption properties and thermodynamics of benzoic acid onto XAD-4 and a water-compatible hyper crosslinked adsorbent. Chin J Polym Sci 21(3):311–318

    Google Scholar 

  54. Uğurlu M, Gürses A, Doğar C (2007) Adsorption studies on the treatment of textile dyeing effluent by activated carbon prepared from olive stone by ZnCl2 activation. Coloration Technol 123(2):106–114

    Article  Google Scholar 

  55. Namasivayam C, Yamuna RT (1995) Adsorption of direct red 12B by biogas residual slurry-equilibrium and rate processes. Environ Pollut 89(1):1–7

    Article  CAS  Google Scholar 

  56. Aksu Z, Dönmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 50:1075–1083

    Article  CAS  Google Scholar 

  57. Nir S, Undabeytia T, Marcovich DY, El-Nahhal Y, Polubesova T, Serban C, Rytwo G, Lagaly G, Rubin B (2000) Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environ Sci Technol 34:1269–1274

    Article  CAS  Google Scholar 

  58. Baskaralingam P, Pulikesi M, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organo bentonite. Hazard Mater 128(2–3):138–144

    Article  CAS  Google Scholar 

  59. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coir pith. Sep Purif Technol 24:497–505

    Article  CAS  Google Scholar 

  60. Chabani M, Amrane A, Bensmaili A (2006) Kinetic modeling of the adsorption of nitrates by ion exchange resin. Chem Eng J 125:111–117

    Article  CAS  Google Scholar 

  61. Treybal RE (1980) Mass-transfer operations, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by Research Fund of the Istanbul University, Project Number 3023, and a part of the master thesis named “Removal of basic dyes and heavy metal ions from aqueous solutions by thermosensitive copolymeric hydrogel” prepared at Istanbul University Institute of Science in 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Işıl Acar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkahraman, B., Acar, I. & Emik, S. Removal of cationic dyes from aqueous solutions with poly (N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym. Bull. 66, 551–570 (2011). https://doi.org/10.1007/s00289-010-0371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0371-1

Keywords

Navigation