Skip to main content
Log in

Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Different molecular weights of polyethylene glycol (PEG, MW 200, 400, 600, 2000, and 4600) were grafted onto silicon tetrachloride (SiCl4) plasma functionalized polyethylene terephthalate (PET) surfaces. Dramatic increase of the C–O peak in the C1s high-resolution spectra determined by electron spectroscopy for chemical analysis suggests that PEG was successfully grafted. PEG-grafted PET showed significant inhibition of attachment and biofilm formation by Salmonella enterica sv. Typhimurium compared to unmodified PET. The antifouling ability of PEG-grafted PET surfaces was affected by the molecular weight of PEG and PEG2000 was the most effective. Both PEG600- and PEG2000-grafted PET also significantly inhibited biofilm formation by Listeria monocytogenes. Stability tests showed that over 2-month storage under ambient conditions PEG2000-grafted PET demonstrated reduced antifouling ability, but still significantly reduced biofilm formation by S. enterica sv. Typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11(1):160–167

    Article  CAS  Google Scholar 

  2. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1(4):667–683

    Article  Google Scholar 

  3. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  Google Scholar 

  4. Mulhall AB, Chapman RG, Crow RA (1988) Bacteriuria during indwelling urethral catheterization. J Hosp Infect 11(3):253–262

    Article  CAS  Google Scholar 

  5. Kehinde EO, Rotimi VO, Al-Hunayan A, Abdul-Halim H, Boland F, Al-Awadi KA (2004) Bacteriology of urinary tract infection associated with indwelling J ureteral stents. J Endourol 18(9):891–896

    Article  Google Scholar 

  6. Den Aantrekker ED, Vernooij WW, Reij MW, Zwietering MH, Beumer RR, van Schothorst M, Boom RM (2003) A biofilm model for flowing systems in the food industry. J Food Prot 66(8):1432–1438

    Google Scholar 

  7. Wong AC (1998) Biofilms in food processing environments. J Dairy Sci 81(10):2765–2770

    Article  CAS  Google Scholar 

  8. Zottola EA, Sasahara KC (1994) Microbial biofilms in the food processing industry—should they be a concern? Int J Food Microbiol 23(2):125–148

    Article  CAS  Google Scholar 

  9. Harris J (1992) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum Press, New York

    Google Scholar 

  10. Sofia SJ, Premnath VV, Merrill EW (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31(15):5059–5070

    Article  CAS  Google Scholar 

  11. Du H, Chandaroy P, Hui SW (1997) Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta 1326(2):236–248

    Article  CAS  Google Scholar 

  12. Zhang F, Kang ET, Neoh KG, Wang P, Tan KL (2001) Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 22(12):1541–1548

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang CR, Babukutty Y, Ohyama T, Kogoma M, Kodama M (2002) Biocompatibility evaluation of ePTFE membrane modified with PEG in atmospheric pressure glow discharge. J Biomed Mater Res 60(3):502–509

    Article  CAS  Google Scholar 

  14. Desai NP, Hossainy SFA, Hubbell JA (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13(7):417–420

    Article  CAS  Google Scholar 

  15. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12):1547–1562

    Article  CAS  Google Scholar 

  16. Kiss E, Samu J, Toth A, Bertoti I (1996) Novel ways of covalent attachment of poly(ethylene oxide) onto polyethylene: surface modification and characterization by XPS and contact angle measurements. Langmuir 12(6):1651–1657

    Article  CAS  Google Scholar 

  17. Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51(3):343–351

    Article  CAS  Google Scholar 

  18. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19(7–9):851–859

    Article  CAS  Google Scholar 

  19. Dalsin JL, Lin L, Tosatti S, Voros J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mMPEG-DOPA. Langmuir 21(2):640–646

    Article  CAS  Google Scholar 

  20. Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23(9):2043–2056

    Article  CAS  Google Scholar 

  21. Szleifer I (1997) Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J 72(2 Pt 1):595–612

    Article  CAS  Google Scholar 

  22. Pasche S, Textor M, Meagher L, Spencer ND, Griesser HJ (2005) Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(l-lysine) adlayers on niobia surfaces. Langmuir 21(14):6508–6520

    Article  CAS  Google Scholar 

  23. Benhabbour SR, Sheardown H, Adronov A (2008) Protein resistance of PEG-functionalized dendronized surfaces: Effect of PEG molecular weight and dendron generation. Macromolecules 41:4817–4823

    Article  CAS  Google Scholar 

  24. Zhu B, Eurell T, Gunawan R, Leckband D (2001) Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold. J Biomed Mater Res 56(3):406–416

    Article  CAS  Google Scholar 

  25. Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher HJ (2003) Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology 149:3239–3246

    Article  CAS  Google Scholar 

  26. Vacheethasanee K, Marchant RE (2000) Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials. J Biomed Mater Res 50(3):302–312

    Article  CAS  Google Scholar 

  27. Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20(25):10949–10955

    Article  CAS  Google Scholar 

  28. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19(17):6912–6921

    Article  CAS  Google Scholar 

  29. Cunliffe D, Smart CA, Alexander C, Vulfson EN (1999) Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol 65(11):4995–5002

    CAS  Google Scholar 

  30. Dong B, Jiang H, Manolache S, Wong AC, Denes FS (2007) Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir 23(13):7306–7313

    Article  CAS  Google Scholar 

  31. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18(3–4):301–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Hatch funds (WIS04771) and by the College of Agricultural and Life Sciences, University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyan Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, B., Manolache, S., Wong, A.C.L. et al. Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym. Bull. 66, 517–528 (2011). https://doi.org/10.1007/s00289-010-0358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0358-y

Keywords

Navigation