Skip to main content

Effect of a formulation named “Giral” on mechanical properties of a composite based on silica and unsaturated polyester resin

Abstract

To improve the performances of a composite based on silica and unsaturated polyester resin, modification of silica surface and addition of a dispersing agent are required. The surface of raw silica was modified with vinyltrimethoxysilane in acidic conditions, adding methacrylic acid. Moreover, to enhance the compatibility between silica and polyester resin, a block copolymer which reacts as a dispersing agent was added. The mixture of these components is named “Giral.” The mechanism of interaction of the different components of the “Giral” with the raw silica is described. Adding this formulation to a mixture of polyester resin and silica leads to a decrease of the viscosity of the polyester resin/silica system and the mechanical properties of the composite thus formed are improved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Gay D, Suong VH, Stephen WT (2003) Composite materials: design and applications. CRC Press, Boca Rotan

    Google Scholar 

  2. 2.

    Chawla KK (1998) Composite materials: science and engineering. Springer, Berlin

    Google Scholar 

  3. 3.

    Pukansky B (2001) Encyclopedia of materials: science and technology. Elsevier, Amsterdam

    Google Scholar 

  4. 4.

    Partridge IK (1989) Advanced composites. Elsevier Applied Science, London

    Google Scholar 

  5. 5.

    Naslain R (1979) Introduction aux Matériaux Composites—II. Matrices Céramiques et Matrices Métalliques. Editions du C.N.R.S, France

    Google Scholar 

  6. 6.

    Reyne M (1995) Les Composites. Presses Universitaires de France, Paris

    Google Scholar 

  7. 7.

    Ruckenstein E, Li ZF (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Colloid Interface Sci 113:43–63

    CAS  Article  Google Scholar 

  8. 8.

    Plueddemann EP (1982) Silane coupling agents. Plenum Press, New York

    Google Scholar 

  9. 9.

    Ishida H (1984) A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints. Polym Compos 5:101–123

    Article  Google Scholar 

  10. 10.

    Plueddemann EP (1974) Interfaces in polymer matrix composites. Academic Press, New York

    Google Scholar 

  11. 11.

    Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195

    CAS  Article  Google Scholar 

  12. 12.

    Guerrero G, Mutin PH, Vioux A (2001) Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater 13:4367–4373

    CAS  Article  Google Scholar 

  13. 13.

    Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    CAS  Article  Google Scholar 

  14. 14.

    Tadros ThF (2005) Applied surfactants, principles and application. Wiley-VCH, Weinheim

    Google Scholar 

  15. 15.

    Zhu LP, Yi Z, Liu F, Wei XZ, Zhu BK, Xu YY (2008) Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes. Eur Polym J 44:1907–1914

    CAS  Article  Google Scholar 

  16. 16.

    Tomczak N, Janczewski D, Han M, Vancso JG (2009) Designer polymer—quantum dot architectures. Progr Polym Sci 34:393–430

    CAS  Article  Google Scholar 

  17. 17.

    Farge H (1987) procédé d’obtention, par greffage chimique, d’une composition et composition obtenue. Patent EP 0.233.119, France

  18. 18.

    Farge H, Lapairy JC (2006) Composition stable pour le greffage chimique de charge inorganique ou organique sur un polymère et procédé de greffage mettant en oeuvre ladite composition. Patent 2.917.742 France

  19. 19.

    Amerio E, Fabbri P, Malucelli G, Messori M, Sangermano M, Taurino R (2008) Scratch resistance of nano-silica reinforced acrylic coatings. Prog Org Coat 62:129–133

    CAS  Article  Google Scholar 

  20. 20.

    Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723–727

    Article  Google Scholar 

  21. 21.

    Knopp D, Tang D, Niessner R (2009) Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30

    CAS  Article  Google Scholar 

  22. 22.

    Raynaud C (2001) Silica films on silicon carbide: a review of electrical properties and device applications. J Non-Cryst Solids 280:1–31

    CAS  Article  Google Scholar 

  23. 23.

    Bergna HE (2006) Colloidal silica fundamental and application vol 131. Chapter 3: colloid chemistry of silica: an overview. CRC Taylor & Francis, Boca Raton

    Google Scholar 

  24. 24.

    Unger KK (1979) Porous silica. Elsevier, Amsterdam

    Google Scholar 

  25. 25.

    Vansant EF, Van der Voort P, Vranken KC (1995) Characterization and chemical modification of the silica surface. Elsevier, Amsterdam

    Google Scholar 

  26. 26.

    Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev Model Colloid Surf 173:1–38

    CAS  Article  Google Scholar 

  27. 27.

    Morrow BA, Farlen MA (1990) Chemical reactions at silica surfaces. J Non-Cryst Solids 120:61–71

    CAS  Article  Google Scholar 

  28. 28.

    Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  29. 29.

    Blitz JP, Murthy RSS, Leyden DEJ (1987) Ammonia-catalyzed silylation reactions of Cab-O-Sil with methoxymethylsilanes. Am Chem Soc 109:7141–7145

    CAS  Article  Google Scholar 

  30. 30.

    Ramos MA, Gil MH, Schacht E, Matthys G, Monderlaers W, Figueiredo MM (1998) Physical and chemical characterization of some silicas and silica derivates. Powder Technol 99:79–85

    CAS  Article  Google Scholar 

  31. 31.

    Zettlemoyer AC, Hsing HH (1977) Water on organosilane-treated silica surfaces. J Colloid Interface Sci 58:263–274

    CAS  Article  Google Scholar 

  32. 32.

    Brinker CJ, Scherrer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

  33. 33.

    Osterholtz FD, Pohl ER (1992) Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol 6:127–149

    CAS  Article  Google Scholar 

  34. 34.

    Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS (1984) Sol-gel transition in simple silicates. II. J Non-Cryst Solids 63:45–59

    CAS  Article  Google Scholar 

  35. 35.

    Sutra P, Fajula F, Brunel D, Lentz P, Daelen G, Nagy JB (1999) 29Si and 13C MAS-NMR characterization of surface modification of micelle-templated silicas during the grafting of organic moieties and end-capping. Colloids Surf A 158:21–27

    CAS  Article  Google Scholar 

  36. 36.

    Johansson U, Holmgren A, Forsling W, Frost RL (1999) Adsorption of silane coupling agents onto kaolinite surfaces. Clay Miner 34:239–246

    CAS  Article  Google Scholar 

  37. 37.

    Lindlar B, Lüchinger M, Röthlisberger A, Haouas M, Pirngruber G, Kogelbauer A, Prins R (2002) Chemical modification of high-quality large-pore M14S materials. J Mater Chem 12:528–533

    CAS  Article  Google Scholar 

  38. 38.

    Mutin PH, Guerrero G, Vioux A (2003) Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C R Chim 6:1153–1164

    CAS  Article  Google Scholar 

  39. 39.

    Pope JA, Mackenzie JD (1986) Sol-gel processing of silica. 2. The role of catalyst. J Non-Cryst Solids 87:185–198

    CAS  Article  Google Scholar 

  40. 40.

    Lewin M (1999) Fire retardancy of polymeric materials: strategies: the use of intumescence. The Royal Society of Chemistry, London

    Google Scholar 

  41. 41.

    Haq M, Burgueno R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and soy bean oil reinforced with nanoclay and natural fibers. Comp Sci Technol 68:3344–3351

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Schuller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schuller, AS., Delaite, C. & Farge, H. Effect of a formulation named “Giral” on mechanical properties of a composite based on silica and unsaturated polyester resin. Polym. Bull. 66, 77–94 (2011). https://doi.org/10.1007/s00289-010-0319-5

Download citation

Keywords

  • Composites
  • Mechanical properties
  • Silica
  • Unsaturated polyester
  • Viscosity