Skip to main content
Log in

Free radical copolymerization of functional water-soluble poly(N-maleoylglycine-co-crotonic acid): polymer metal ion retention capacity, electrochemical, and thermal behavior

  • Original paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the water-soluble polymers of N-maleoyl glycine (MG) with crotonic acid (CA) were copolymerized by free radical polymerization to obtain hydrophilic polymers, in order to study the effect of the functional groups in the copolymers on the metal ion retention capacity, electrochemical and thermal behavior, since that important requirements for their use in technological applications are: high solubility in water, chemical stability, a high affinity for one or more metal ions, and selectivity for the metal ion of interest. The metal complexation properties of poly(MG-co-CA) for the metal ions were investigated at pH 3, 5, and 7 in aqueous solution. The metal ion investigated were: Cu(II), Co(II), Cr(III), Ni(II), Cd(II), Zn(II), and Fe(III). The polymeric systems showed high metal ion retention for Zn (II) and Fe(III) at different pH. At different pHs, the MRC of the poly(MG-co-CA) for Fe(III) ions varied from 122.1 to 146.2 mg/g and from 120.5 to 133.5 mg/g, (samples 1 and 2 at pH 3 and 7, respectively). The MRC had the highest retention values for both copolymer systems at pH 7. The copolymers presented higher thermal decomposition temperature (TDT) in comparison with copolymer–metal complexes at pH 3 and 5. The cyclic voltammetry (CV) for poly(MG-co-CA) (20 mM) was compared with the CV of the [poly(MG-co-CA)–Fe(III)] copolymer complex. Moreover, [poly(MG-co-CA)–Fe(III)] showed a redox wave difference between +0.25 and +0.50 V possibly due to the presence of metal complexed with the polymer. The electrochemical characterization of the copolymer poly(MG-co-AC) shown the reduction of carboxylic acid groups of the N-maleoylglycine and crotonic acid moiety to hydroxyl group. The results support the assumption that the copolymer presents convenient electroactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rivas BL, Pereira E, Cid R, Geckeler KE (2005) Polyelectrolyte-assisted removal of metal ions with ultrafiltration. J Appl Polym Sci 95(5):1091–1099

    Article  CAS  Google Scholar 

  2. Saglam A, Bektas S, Patir S, Genc Ö, Denizli A (2001) Novel metal complexing ligand: thiazolidine carrying poly(hydroxyethylmethacrylate) microbeads for removal of cadmium (II) and lead (II) ions from aqueous solutions. React Funct Polym 47(3):185–192

    Article  CAS  Google Scholar 

  3. Denizli A, Kesenci K, Salih B, Senel S, Piskin E (1999) Metal chelating properties of Cibacron Blue F3GA-derived poly(EGDMA-HEMA) microbeads. J Appl Polym Sci 71(9):13971403

    Article  Google Scholar 

  4. Moreno-Villoslada I, Rivas BL (2003) Retention of metal ions in ultrafiltration of mixtures of divalent metal ions and water-soluble polymers at constant ionic strength based on Freundlich and Langmuir isotherms. J Membr Sci 215(1–2):195–202

    Article  CAS  Google Scholar 

  5. Beatty ST, Fischer RJ, Hagers DL, Rosenberg E (1999) A comparative study of the removal of heavy metal ions from water using a silica-polyamine composite and a polystyrene chelator resin. Ind Eng Chem Res 38(11):4402–4408

    Article  CAS  Google Scholar 

  6. Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52(1):31–41

    Article  CAS  Google Scholar 

  7. Rivas BL, Pooley SA, Luna M (2000) Chelating properties of poly(N-acryloyl piperazine) by liquid-phase polymer-based retention (LPR) technique. Macromol Rapid Commun 21(13):905–908

    Article  CAS  Google Scholar 

  8. Rivas BL, Moreno-Villoslada I (2001) Polyelectrolyte behavior of three copolymers of 2-acrylamido-2-methyl-propanesulfonic acid and N-acryloyl-N’-methylpiperazine studied by ultrafiltration. J Membr Sci 187(1–2):271–275

    Article  CAS  Google Scholar 

  9. Rivas BL, Maturana HA, Villegas S (2000) Adsorption behavior of metal ions by amidoxime chelating resin. J Appl Polym Sci 77(9):1994–1999

    Article  CAS  Google Scholar 

  10. Rzaev ZMO (2000) Complex-radical alternating copolymerization. Progr Polym Sci 25(2):163–217

    Article  CAS  Google Scholar 

  11. Morlay C, Cromer M, Mouginot M, Vittori O (1999) Potentiometric study of Cd(II) and Pb(II) complexation with two high molecular weight poly(acrylic acids); comparison with Cu(II) and Ni(II). Talanta 48(5):1159–1166

    Article  CAS  Google Scholar 

  12. Bharel R, Choudhary V, Varna IK, Wang FW (1995) Physicomecanical properties of poly(methyl methacrylate-co-N-arylmaleimides). J Appl Polym Sci 57(6):767–773

    Article  CAS  Google Scholar 

  13. Choudhary V, Mishra A (1996) Studies on the copolymerization of methyl methacrylate and N-arylmaleimides. J Appl Polym Sci 62(4):707–712

    Article  CAS  Google Scholar 

  14. Morlay C, Cromer M, Vittori O (2000) The removal of copper(II) and nickel (II) from dilute aqueous solution by a synthetic flocculant: a polarographic study of the complexation with a high molecular weight poly(acrylic acid) for different pH value. Water Res 34(2):455–462

    Article  CAS  Google Scholar 

  15. Mouginot Y, Morlay C, Cromer M, Vittori O (2000) Potentiometric study of copper (II) and nickel (II) complexation by a cross-linked poly(acrylic acid) gel. Anal Chim Acta 407(1–2):337–345

    Article  CAS  Google Scholar 

  16. Disbudak A, Bektas S, Patir S, Genc Ö, Denizli A (2002) Cysteine-metal affinity chromatography: determination of heavy metal adsorption properties. Sep Purif Technol 26(2–3):273–281

    Article  CAS  Google Scholar 

  17. del Pizarro GC, Marambio OG, Jeria-Orell M, Huerta MR, Rodríguez OO, Rivas BL, Geckeler KE (2007) Metal-ion interaction of water-soluble copolymers containing carboxylic acid groups in aqueous phase by membrane filtration technique. J Appl Polym Sci 105(5):2893–2902

    Article  CAS  Google Scholar 

  18. Rivas BL, del Pizarro GC, Marambio OG, Geckeler KE (1998) Thermal properties of poly(maleyl glycine) and poly(maleyl glycine-co-acrylic acid) and their metal complexes. Polym Bull 41:317–324

    Article  CAS  Google Scholar 

  19. del Pizarro GC, Marambio OG, Jeria-Orell M, Oyarzún DP, Rivas BL, Habicher WD (2007) Preparation, characterization, and metal ion retention capacity of Co(II) and Ni(II) from poly(p-HO- and p-Cl-phenyl maleimide-co-2-hydroxypropylmetha crylate using the ultra filtration technique. J Appl Polym Sci 106:2448–2455

    Article  CAS  Google Scholar 

  20. Sohn BH, Cohen RE (1997) Processible optically transparent block copolymer films containing superparamagnetic iron oxide manoclusters. Chem Mater 9:264–269

    Article  CAS  Google Scholar 

  21. Ali HA, Iliadis AA (2004) Comparative study of self-assembled ZnO nanostructures in poly(styrene-acrylic acid) diblock copolymers-[PS]m[PAA]n on Si and SiO2/Si surfaces. Thin Solid Films 469–470, 425–430

  22. Borah HN, Boruah RC, Sandhu JS (1998) Microware-induced one-pot synthesis of N-carboxyalkylmaleimides and phthalimides. J Chem Res S(1):272–273

    Article  Google Scholar 

  23. del Pizarro GC, Rivas BL, Geckeler KE (1997) Preparation and characterization of water-soluble poly(acrylic-co-n-maleylglycine). J Macromol Sci Pure Appl Chem A34(5):855–864

    Google Scholar 

  24. Marambio OG, Pizarro GD, Jeria-Orell M, Huerta M, Olea-Azar C, Habicher WD (2005) Poly(N-phenylmaleimide-co-acrylic acid)-copper (II) and Poly(N-phenylmaleimide-co-acrylic acid)-cobalt (II) complexes: synthesis, characterization, and thermal behavior. J Polym Sci Part A Polym Chem 43(20):4933–4941

    Article  CAS  Google Scholar 

  25. Rivas BL, Schiappacasse LN, Pereira E, Moreno-Villoslada I (2004) Error simulation in the determination of the formation constant of polymer-metal complexes (PMC) by liquid-phase polymer-based retention (LPR) technique. J Chil Chem Soc 49(4):345–350

    Article  CAS  Google Scholar 

  26. Rivas BL, Pereira ED, Gallegos P, Geckeler KE (2002) Water-soluble acidic polyelectrolytes with metal removing ability. Polym Adv Technol 13:10–12

    Article  Google Scholar 

  27. Moreno-Villoslada I, Rivas BL (2002) Competition of divalent metal ions with monovalent metal ions on the adsorption on water-soluble polymer. J Phys Chem B 106(38):9708–9711

    Article  CAS  Google Scholar 

  28. del Pizarro GC, Rivas BL, Geckeler KE (1996) Metal complexing properties of a water-soluble poly(n-maley glycine) studied by liquid-phase polymer-based retention technique. Polym Bull 37(4):525–530

    Article  CAS  Google Scholar 

  29. Tuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes. Adv Polym Sci 45:1–91

    Article  Google Scholar 

  30. Lekchiri A, Castello A, Morcellet J, Morcellet M (1991) Copper-complexes and catalase-like activity of a polyelectrolyte derived from aspartic acid. Eur Polym J 27(11):1271–1278

    Article  CAS  Google Scholar 

  31. Choi SJ, Geckeler KE (2000) Synthesis and properties of hydrophilic polymer. Part 8. Preparation, characterization and metal complexing of poly[(2-hydroxyethyl)-DL-aspartamide] in aqueous solution. Polym Int 49(11):1519–1524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Dirección de Investigación de la Universidad Tecnólogica Metropolitana (Project UTEM 293/07, 294/07), Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), and the Deutsche Akademische Austauschdienst (DAAD) for financial support. Rivas BL thanks CIPA the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe del C. Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marambio, O.G., Sánchez, J., del C. Pizarro, G. et al. Free radical copolymerization of functional water-soluble poly(N-maleoylglycine-co-crotonic acid): polymer metal ion retention capacity, electrochemical, and thermal behavior. Polym. Bull. 65, 701–717 (2010). https://doi.org/10.1007/s00289-010-0298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0298-6

Keywords

Navigation