Skip to main content

Advertisement

Log in

Assembly, characterization of Ag nanoparticles in P(AAm-co-NVP)/CS semi-IPN, and swelling of the resulting composite hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) with controlled size and size distribution were prepared by an in situ chemical reduction route based on a microreactor template composed of poly(acrylamide-co-N-vinylpyrrolidone)/chitosan semi-interpenetrating network hydrogels, P(AAm-co-NVP)/CS semi-IPN, in the presence of sodium hypophosphite. The characterization of structures and morphologies of the as-fabricated P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was conducted on a Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), and UV–vis spectrometer. The effect of various component proportions of the reactants on formation of AgNPs and swelling of the resulting P(AAm-co-NVP)/CS–Ag nanocomposite hydrogels was investigated. The experimental results indicated that the Ag grains were uniformly dispersed within P(AAm-co-NVP)/CS hydrogel networks in a spherical shape, and were stabilized by the semi-IPN structure and a complexation and/or electrostatic interaction between Ag+ cations and chemical functional groups, such as –OH, –CONH2, –NH2 or –C=O based on the semi-IPN structure reactor templates. The size of the majority of AgNPs ranges from 12 to 25 nm, depending on the three-network templates, the presence of functional groups as well as feed ratios of N-vinylpyrrolidone, acrylamide, and chitosan. Thermogravimetric analysis (TGA) provides the stability of the resulting nanocomposite hydrogels. The nanocomposite hydrogels demonstrate reduced swelling in comparison with the P(AAm-co-NVP)/CS ones. The kinetics modeling confirms that transport mechanism of the samples follows anomalous diffusion mode, and the kinetic parameters vary with the component ratios, and the maximal theoretical water volume S is well in agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oh SK, Kim YG, Ye H, Crooks RM (2003) Synthesis, characterization, and surface immobilization of metal nanoparticles encapsulated within bifunctionalized dendrimers. Langmuir 19:10420–10425

    Article  CAS  Google Scholar 

  2. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1):158–164

    Article  CAS  Google Scholar 

  3. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S (2005) Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J Am Chem Soc 127:7980–7981

    Article  CAS  Google Scholar 

  4. Murthy PSK, Mohan YM, Varaprasada K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224

    Article  CAS  Google Scholar 

  5. Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2003) Highly dispersed metal nanoparticles porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15:4332–4336

    Article  CAS  Google Scholar 

  6. Voronov A, Kohut A, Peukert W (2007) Synthesis of amphiphilic silver nanoparticles in nanoreactors from invertible polyester. Langmuir 23:360–363

    Article  CAS  Google Scholar 

  7. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669

    Article  CAS  Google Scholar 

  8. He BL, Tan JJ, Liew KY, Liu HF (2004) Synthesis of size controlled Ag nanoparticles. J Mol Catal A 221:121–126

    Article  CAS  Google Scholar 

  9. Huber K, Witte T, Hollmann J, Keuker-Baumann S (2007) Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution. J Am Chem Soc 129:1089–1094

    Article  CAS  Google Scholar 

  10. Zhu JF, Zhu YJ (2006) Microwave-assisted one-step synthesis of polyacrylamide-metal (M) Ag, Pt, Cu) nanocomposites in ethylene glycol. J Phys Chem B 110:8593–8597

    Article  CAS  Google Scholar 

  11. Lu DL, Tanaka KI (1997) Au, Cu, Ag, Ni, and Pd particles grown in solution at different electrode potentials. J Phys Chem B 101:4030–4038

    Article  CAS  Google Scholar 

  12. Li GP, Luo YJ, Tan HM (2004) Preparation of silver nanoparticles using dendrimer as template. Acta Chim Sin 62(12):1158–1161

    CAS  Google Scholar 

  13. Garcia-Martinez JC, Wilson OM, Scott RWJ, Crooks RM (2006) Extraction of metal nanoparticles from within dendrimer templates. ACS Symp Ser 928:215–229

    Article  CAS  Google Scholar 

  14. Liu X, Kakkar A (2008) Tailoring silver nanoparticle construction using dendrimer templated silica networks. Nanotechnology 19:245602–245606

    Article  Google Scholar 

  15. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohyd Polym 75:463–471

    Article  CAS  Google Scholar 

  16. Zhang J, Xu S, Kumachev E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7912

    Article  CAS  Google Scholar 

  17. Kuckling D, Duan VC, Wohlrab SE (2002) Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir 18:4263–4269

    Article  CAS  Google Scholar 

  18. Kopecek J (2002) Swell gels. Nature 417(6887):388–391

    Article  CAS  Google Scholar 

  19. Xiang Y, Chen D (2007) Preparation of a novel pH-responsive silver nanoparticle/poly (HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J 43(10):4178–4187

    Article  CAS  Google Scholar 

  20. Fan X, Huang KL, Liu SQ, Yu JG, Yin LG (2007) Preparation and characteristic of silver nanoparticles by chemical reduction. J Func Mater 6(38):996–1002

    Google Scholar 

  21. He R, Qian XF, Yin J, Zhu ZK (2003) Formation of silver dendrites under microwave irradiation. Chem Phys Lett 369(3–4):454–458

    Article  CAS  Google Scholar 

  22. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11

    Article  CAS  Google Scholar 

  23. Vinogradov SV (2006) Colloidal microgels in drug delivery applications. Curr Pharm Des 12:4703–4712

    Article  CAS  Google Scholar 

  24. Pathak P, Katiyar VK (2007) Cancer research-nanoparticles, nanobiosensors and their use in cancer research. J Nanotechnol 3:1–14

    Google Scholar 

  25. Bajpai SK (2006) Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water intake. React Funct Polym 66(4):431–440

    Article  CAS  Google Scholar 

  26. Lin WC, Yu DG, Yang MC (2005) pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloid Surf B 44(2–3):143–151

    Article  CAS  Google Scholar 

  27. Rokhade AP, Agnihotri SA, Patil SA (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohyd Polym 65(3):243–252

    Article  CAS  Google Scholar 

  28. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82

    Article  Google Scholar 

  29. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395

    Article  CAS  Google Scholar 

  30. Tarnavchyk I, Voronov A, Kohut A, Nosova N, Varvarenko S, Samaryk V, Voronov S (2009) Reactive hydrogel networks for the fabrication of metal-polymer nanocomposites. Macromol Rapid Comm 30(18):1564–1569

    Article  CAS  Google Scholar 

  31. Biswal J, Kumar V, Bhardwaj YK, NK Goel, Dubey KA (2007) Radiation-induced grafting of acrylamide onto guar gum in aqueous medium: Synthesis and characterization of grafted polymer guar-g-acrylamide. Radiat Phys chem 76(10):1624–1630

    Article  CAS  Google Scholar 

  32. Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU (2008) Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental Mater 24(10):1381–1390

    Article  CAS  Google Scholar 

  33. Sun L, Du Y, Chen L, Huang R, Chen X (2004) The synthesis of carboxymethylchitosan hydrogel and the application in drug controlled release systems. Acta Polym Sin 8(2):191–195

    Google Scholar 

  34. Moura MR, Aouada FA, Mattoso LHC (2008) Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci 321:477–483

    Article  Google Scholar 

  35. Yi JZ, Zhang LM (2007) Studies of sodium humate/polyacrylamide/clay hybrid hydrogels: I. Swelling and rheological properties of hydrogels. Eur Polym J 43(8):3215–3221

    Article  CAS  Google Scholar 

  36. Ng LT, Swami S (2005) IPNs based on chitosan with NVP and NVP/HEMA synthesized through photoinitiator-free photopolymerisation technique for biomedical applications. Carbohyd Polym 60:523–528

    Article  CAS  Google Scholar 

  37. Dergunov SA, Nam IK, Mun GA, Nurkeeva ZS, Shaikhutdinov EM (2005) Radiation synthesis and characterization of stimuli-sensitive chitosan–polyvinyl pyrrolidone hydrogels. Radiat Phys chem 72:619–623

    Article  CAS  Google Scholar 

  38. Mane RS, Lee WJ, Pathan HM, Han SH (2005) Nanocrystalline TiO2-ZnO thin films: fabrication and application to dye-sensitized solar cells. J Phys Chem B 109(51):24254–24259

    Article  CAS  Google Scholar 

  39. Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloid Surf B 39(1–2):31–37

    Article  CAS  Google Scholar 

  40. Patel K, Kapoor S, Dave DP, Mukherjee T (2005) Synthesis of Pt, Pd, Pt/Ag and Ag/Pt nanoparticles by microwave-polyol method. J Chem Sci 117:311–314

    Article  CAS  Google Scholar 

  41. Kuila BK, Garai A, Nandi AK (2007) Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) nanocomposites: enhanced luminescence property in the nanocomposite thin films. Chem Mater 19(22):5443–5452

    Article  CAS  Google Scholar 

  42. Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys chem 76:1126–1131

    Article  CAS  Google Scholar 

  43. Chen SP, Wu GZ, Zeng HY (2005) Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohyd Polym 60:33–38

    Article  CAS  Google Scholar 

  44. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrolidone). Langmuir 12:909–912

    Article  CAS  Google Scholar 

  45. Wang Y, Li Y, Yang S, Zhang G, An D, Wang C, Yang Q, Chen X, Jing X, Wei Y (2006) A convenient route to polyvinylpyrrolidon/silver nanocomposite by electrospinning. Nanotechnology 17:3304–3307

    Article  CAS  Google Scholar 

  46. Horák D, Pollert E, Macková H (2008) Properties of magnetic poly(glycidyl methacrylate) and poly(N-isopropylacrylamide) microspheres. J Mater Sci 43:5845–5850

    Article  Google Scholar 

  47. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Comm 27:1346–1354

    Article  CAS  Google Scholar 

  48. Wang XJ, Liu SX, He JH (2006) Fabrication and characteristics of Ag-PVA and Ag-PVA/TiO2 ultrathin composite films. Photographic Sci Photochem 24(6):421–427

    Google Scholar 

  49. Lee WF, Yen SH (2000) Thermoreversible hydrogels. XII. Effect of the polymerization conditions on the swelling behavior of the N-isopropylacrylamide gel. J Appl Polym Sci 78:1604–1611

    Article  CAS  Google Scholar 

  50. Jin S, Bian F, Liu M, Chen S, Liu H (2009) Swelling mechanism of porous P(VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment. Polym Inter 58:142–148

    Article  CAS  Google Scholar 

  51. Lin ZH, Wu WH, Wang JQ, Jin X (2007) Swelling properties of P(HEMA-co-NEVER) high-strength copolymeric hydrogels. Fine Chem 24:1043–1048

    CAS  Google Scholar 

  52. Wilder EA, Spontak RJ, Hall CK (2003) The molecular structure and intermolecular interactions of 1, 3:2, 4-dibenzylidene-d-sorbital. Mol Phys 101(19):3017–3027

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (grant: 10675078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ling Luo or Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, YL., Xu, F., Chen, YS. et al. Assembly, characterization of Ag nanoparticles in P(AAm-co-NVP)/CS semi-IPN, and swelling of the resulting composite hydrogels. Polym. Bull. 65, 181–199 (2010). https://doi.org/10.1007/s00289-010-0248-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0248-3

Keywords

Navigation