Skip to main content
Log in

Polyelectrolyte adsorption study on polyethersulfone membrane during polymer-enhanced ultrafiltration by electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy (EIS) was used to study the fouling produced due to the adsorption of poly(vinyl sulfonic acid) on polyethersulfone membrane during metal ion recovery by polymer-enhanced ultrafiltration (PEUF). A solution of PVSA (40 mM in monomeric unit and pH 3.0, 4.5, and 6.0) was placed in a ultrafiltration cell, and then a stream of metal ions (2.0 mM in Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+) was passed from reservoir to cell. Fouled membranes were studied by EIS at low and intermediate frequencies. Measurements of hydrodynamic permeability and ATR-FTIR spectra were also obtained. Different relaxation processes were observed with characteristic frequencies (f 0) ~ 78 kHz and f 0 ~ 3562 kHz for active layer and clean membrane, respectively, while the frequencies for the fouled membrane f 0 = ~79.4 and f 0 = ~2511.9 kHz (pH 3.0). The value of f 0 could not be defined at pH 6.0. The relaxation times obtained were in the order of ×10−5 and ×10−3 s approximately for all cases. Our results suggest that relaxation mechanisms, at intermediate frequencies, can mainly be associated to polarization processes or to the migration of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen J, Mou H, Wang L, Matsuura T (2006) Membrane filtration. In: Wang L, Hung Y, Shammas N (eds) Advanced physicochemical treatment processes. Humana Press Inc., New Jersey, pp 203–259

    Chapter  Google Scholar 

  2. Rivas B, Pereira E, Moreno I (2003) Water-soluble polymer–metal ion interactions. Prog Polym Sci 28:173–208

    Article  CAS  Google Scholar 

  3. Geckeler K, Shkinev V, Spivakov Y (1988) Liquid-phase polymer-based retention (LPR)—a new method for selective ion separation. Sep Purif Rev 17(2):105–140

    Article  CAS  Google Scholar 

  4. Rivas B, Maureira A (2008) Water-soluble polyelectrolytes containing sulfonic acid groups with metal ion binding ability by using the liquid phase polymer based retention technique. Macromol Symp 270:143–152

    Article  CAS  Google Scholar 

  5. Cheryan M (1986) Ultrafiltration handbook. Technomic Publishing Company, Inc., Lancaster

    Google Scholar 

  6. Kim H, Krishnan N, Lee S, Hwang S, Kim D, Jeong K, Lee J, Cho E, Lee J, Han J, Ha H, Lim T (2006) Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations. J Power Sources 160:353–358

    Article  CAS  Google Scholar 

  7. Macdonald J (1987) Impedance spectroscopy. Emphasizing solid materials and systems. Wiley Interscience Publication, New York

    Google Scholar 

  8. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  9. Sarac A, Ates M, Kilic B (2008) Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon and carbon fiber microelectrodes. Int J Electrochem Sci 3:777–786

    CAS  Google Scholar 

  10. Chilcott T, Chan M, Gaedt L, Nantawisarakul T, Fane A, Coster H (2002) Electrical impedance spectroscopy characterization of conducting membranes. I. Theory. J Membr Sci 195:153–167

    Article  CAS  Google Scholar 

  11. Silverman D, Carrico J (1998) Electrochemical impedance technique—a practical tool for corrosion prediction. Corrosion-NACE 44(5):280–287

    Google Scholar 

  12. Barsoukov E, Ross J (2005) Impedance spectroscopy. Theory, experiment, and applications, 2nd edn. Wiley Interscience Publication, New York

    Google Scholar 

  13. Gaedt L, Chilcott TC, Chan M, Nantawisarakul T, Fane AG, Coster H (2002) Electrical impedance spectroscopy characterization of conducting membranes II. J Membr Sci 195:169–180

    Article  CAS  Google Scholar 

  14. Park JS, Choi JH, Woo JJ (2006) An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J Colloid Interface Sci 300:655–662

    Article  CAS  Google Scholar 

  15. Kavanagh J, Hussain S, Chilcott T, Coster H (2009) Fouling of reverse osmosis membranes using electrical impedance spectroscopy: measurements and simulations. Desalination 236:187–193

    Article  CAS  Google Scholar 

  16. Fortunato R, Branco L, Afonso C, Benavente J, Crespo J (2006) Electrical impedance spectroscopy characterization of supported ionic liquid membranes. J Membr Sci 270:42–49

    Article  CAS  Google Scholar 

  17. Rodríguez M, Tucceri R, Florit M, Posadas DJ (2001) Constant phase element behavior in the poly(o-toluidine) impedance response. Electroanal Chem 502:82–90

    Article  Google Scholar 

  18. Bordi F, Cametti C, Colby R (2004) Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J Phys Condens Matter 16:1423

    Article  Google Scholar 

  19. Chi Kao K (2004) Dielectric phenomena in solids with emphasis on physical concepts of electronic processes. Elsevier Academic Press, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors thank FONDECYT (Grants No. 1070542 and 1061018) and CIPA for financial support; M. Palencia acknowledges to “Comisión Nacional de Investigación, Ciencia y Tecnología” (CONYCT-Chile) and “Centro de Investigación de Polímeros Avanzados” (CIPA-Chile) for partial financing of the Ph.D. Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palencia, M., Rivas, B.L., Pereira, E. et al. Polyelectrolyte adsorption study on polyethersulfone membrane during polymer-enhanced ultrafiltration by electrochemical impedance spectroscopy. Polym. Bull. 65, 145–156 (2010). https://doi.org/10.1007/s00289-009-0236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0236-7

Keywords

Navigation