Skip to main content
Log in

Fracture surface characteristics and impact properties of poly(butylene terephthalate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, the relationship between fracture surface feature and impact properties of poly(butylene terephthalate) (PBT) was investigated. The results indicated that the fracture surface morphology of notched impact specimens tested in the temperature range from 196 to 180 °C could be differentiated into brittle (T ≤ 20 °C) and ductile appearances (T > 20 °C). The fracture surface roughness was characterized by surface roughness ratio (R s) and fractal dimension (D b). The fracture mode significantly influenced the relationship between impact strength and fracture surface roughness. When PBT fractured in a brittle mode, both the measured values of R s and D b could correspond to impact strength appropriately. On the contrary, when PBT fractured in a ductile mode, their relationship became not statistically significant because the area of the plastic deformation zone instead of fracture surface roughness might be the major factor influencing impact strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Volkel M (2005) Brittle fracture in PBT. Kunstst-Plast Eur 95:191–194

    CAS  Google Scholar 

  2. Takahashi Y, Murakami K, Nishikawa S (2002) Mechanism for the phase transition of poly(butylenes terephthalate). J Polym Sci Polym Phys 40:765–771

    Article  CAS  Google Scholar 

  3. Weichenhain R, Wesner DA, Pfleging W, Horn H, Kreutz EW (1997) KrF-excimer laser pretreatment and metallization of polymers. Appl Surf Sci 110:264–269

    Article  Google Scholar 

  4. Gerson LM, Leonardo BC, Elias HJ, Luiz AP (2001) Toughening of PBT by ABS, SBS and HIPS systems and the effects of reactive functionalized copolymers. Macromol Symp 176:167–180

    Article  Google Scholar 

  5. Sun SL, Tan ZY, Zhou C, Zhang MY, Zhang HX (2007) Effect of ABS grafting degree and compatibilization on the properties of PBT/ABS blends. Polym Compos 28:484–492

    Article  Google Scholar 

  6. Xiao JF, Hu YA, Lu HD, Cai YB, Chen ZY (2007) Effect of order of mixing on morphology and thermal properties of the compatibilized PBT and ABS alloys/OMMT nanocomposites. J Appl Polym Sci 104:2130–2139

    Article  CAS  Google Scholar 

  7. Canto LB, Hage E, Pessan LA (2006) Effects of the molecular structure of impact modifier and compatibilizer on the toughening of PBT/SBS/PS-GMA blends. J Appl Polym Sci 102:5795–5807

    Article  CAS  Google Scholar 

  8. Larocca NM, Hage E, Pessan LA (2005) Effect of reactive compatibilization on the properties of poly(butylene terephthalate)/acrylonitrile-ethylene-propylene-diene-styrene blends. J Polym Sci Polym Phys 43:1244–1259

    Article  CAS  Google Scholar 

  9. Kelnar I, Kotek J, Munteanu BS, Kaprálková L (2004) PBT blends with rigid polymer and elastomer inclusions: the effect of component type and reactivity on mechanical behaviour. Polym Int 53:2066–2071

    Article  CAS  Google Scholar 

  10. Larocca NM, Hage E, Pessan LA (2004) Toughening of poly(butylene terephthalate) by AES terpolymer. Polymer 45:5265–5277

    Article  CAS  Google Scholar 

  11. Yuan Q, Misra RDK (2006) Impact fracture behavior of clay-reinforced polypropylene nanocomposites. Polymer 47:4421–4433

    Article  CAS  Google Scholar 

  12. Doyle MJ (1982) Nucleation and propagation of cracks in a polystyrene craze layer. J Mater Sci 17:760–768

    Article  CAS  Google Scholar 

  13. Luo WB, Yang TQ, Wang XY (2004) Time-dependent craze zone growth at a crack tip in polymer solids. Polymer 45:3519–3525

    Article  CAS  Google Scholar 

  14. Cheng C, Hiltner A, Baer E, Soskey PR, Mylonakis SG (1994) Deformation of rubber-toughened polycarbonate: macroscale analysis of the damage zone. J Appl Polym Sci 52:177–193

    Article  CAS  Google Scholar 

  15. Liu K, Piggott MR (1998) Fracture failure processes in polymers. I: mechanical tests and results. Polym Eng Sci 38:60–68

    Article  CAS  Google Scholar 

  16. Mathew AP, Thomas S (2001) Izod impact behavior of natural rubber/polystyrene interpenetrating polymer networks. Mater Lett 50:154–163

    Article  CAS  Google Scholar 

  17. Wu HY, Ma G, Xia YM (2004) Experimental study of tensile properties of PMMA at intermediate strain rate. Mater Lett 58:3681–3685

    Article  CAS  Google Scholar 

  18. Lee EKC, Rudin A, Plumtree AJ (1995) The interpretation and use of fracture surface morphology—a special case for polystyrene. J Mater Sci 30:2091–2096

    Article  CAS  Google Scholar 

  19. Kulawansa DM, Langford SC, Dickinson JT (1992) Scanning tunneling microscope observations of polymer fracture surfaces. J Mater Res 7:1292–1302

    Article  CAS  Google Scholar 

  20. Zhang MJ, Zhi FX, Su XR (1989) Fracture toughness and crack growth mechanism for multiphase polymers. Polym Eng Sci 29:1142–1146

    Article  CAS  Google Scholar 

  21. Luo WB, Yang TQ (2003) Computer simulation of conic-shaped patterns on fracture surfaces of polymers. J Appl Polym Sci 89:1722–1725

    Article  CAS  Google Scholar 

  22. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, London

    Google Scholar 

  23. Brandt A, Prokopski G (1993) On the fractal dimension of fracture surfaces of concrete elements. J Mater Sci 28:4762–4766

    Article  CAS  Google Scholar 

  24. Issa MA, Hammad AM (1994) Assessment and evaluation of fractal dimension of concrete fracture surface digitized images. Cem Concr Res 24:325–334

    Article  Google Scholar 

  25. Carpinteri A, Chiaia B (1995) Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. Mater Struct 28:435–443

    Article  Google Scholar 

  26. Gokhale AM, Underwood EE (1990) A general method for estimation of fracture roughness. Metall Trans A Phys Metall Mater Sci 21:1193–1199

    Google Scholar 

  27. Hammad AM, Issa MA (1994) Fractal dimension as a measure of roughness of concrete fracture trajectories. Adv Cem Based Mater 1:169–177

    Article  CAS  Google Scholar 

  28. Yu J, Jin ZH, Lei H, Liu YC, Luo Z (1999) The quantitative relation between notched impact strength and fracture surface roughness of polymer materials. Acta Polym Sin 5:612–615

    Google Scholar 

  29. ElSaundani SM (1978) Profilometric analysis of fractures. Metallography 11:247–336

    Article  Google Scholar 

  30. Chermant JL, Coster M (1979) Review quantitative fractography. J Mater Sci 14:509–534

    CAS  Google Scholar 

  31. Wright K, Karlsson B (1983) Topographic quantification of non-planar localized surfaces. J Microsc-Oxford 1:37–51

    Google Scholar 

  32. Underwood EE (1986) Estimating fracture characteristics by quantitative fractography. J Met 38:106–178

    Google Scholar 

  33. Gokhale AM, Underwood EE (1986) A new parametric roughness equation for quantitative fractography. Acta Stereol 8:43–52

    Google Scholar 

  34. Lech C, Andrzdj G, Joanna K (2001) On the characterization of polymer concrete fracture surface. Cem Concr Comp 23:399–403

    Article  Google Scholar 

  35. Huang ZH, Tian JF, Wang ZG (1990) Study of irregular surfaces by secondary electron line scanning. Mater Sci Eng A Struct 129:1–4

    Article  Google Scholar 

  36. Huang ZH, Tian JF, Wang ZG (1989) Analysis of fractal characteristics of fractured surfaces by secondary electron line scanning. Mater Sci Eng A Struct 118:19–24

    Article  Google Scholar 

  37. Wang X, Zhou H, Wang ZH, Tian MS, Liu YS, Kong QP (1999) Fractal analysis of cyclic creep fractured surfaces of two high temperature alloys. Mater Sci Eng A Struct 266:250–254

    Article  Google Scholar 

  38. Li XW, Tian JF, Kang Y, Su HH, Wang ZG (1996) Quantitative characterization of fracture surface roughness using secondary electron line scanning method. J Mater Sci Lett 15:2137–2140

    CAS  Google Scholar 

  39. Yu J, Xu T, Tian YZ, Chen XJ, Luo Z (2002) The effects of the aggregation structure parameters on impact-fractured surface fractal dimension and strain-energy release rate for polypropylene. Mater Des 23:89–95

    CAS  Google Scholar 

  40. Andreas S, Manfred K, Robert HS (2007) Characterization of surface activity of carbon black and its relation to polymer-filler interaction. Macromol Mater Eng 292:885–916

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this work from Guizhou Flare Plan (No. 20008005) and Guizhou Science Fund (No. 20003072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yu or Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, P., Xue, B., Song, Y. et al. Fracture surface characteristics and impact properties of poly(butylene terephthalate). Polym. Bull. 64, 185–196 (2010). https://doi.org/10.1007/s00289-009-0199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0199-8

Keywords

Navigation