Skip to main content
Log in

Synthesis and characterization of poly(catechol) catalyzed by porphyrin and enzyme

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Catalytic polymerization of catechol was performed employing the cationic porphyrin and horseradish peroxidase (HRP) as catalysts. The obtained results demonstrate that the cationic metalloporphyrin is a more-efficient catalyst than the HRP in the catechol polymerization. The oxidative polymerization was carried out in the presence of polystyrene sulfonate (PSS) as a template. According to TGA data, poly(catechol) that is synthesized by porphyrin catalyst exhibits more thermal stability than the enzymatic catalyzed product. The GPC indicate higher molecular weight of polymer synthesized by porphyrin as a catalyst. Cyclic voltammetry measurements show that the synthesized polymers have convenient electroactivity. The poly(catechol) and its methyl and methoxy derivatives that are synthesized by porphyrin catalyst show low electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kopf PW, Little AD (1988) Phenolic resin. In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering. vol 11, 2nd edn. Wiley, New York, pp 45–95

  2. Dordick JS, Marletta MA, Klibanov AM (1987) Polymerization of phenols catalyzed by peroxidase in nonaqueouse media. Biotechnol Bioeng 30:31–36

    Article  CAS  Google Scholar 

  3. Aktaş N, Şahiner N, Kantoğlu Ö, Salih B, Tanyolaç A (2003) Biosynthesis and characterization of laccase catalyzed poly(catechol). J Polym Environ 11:123–128

    Article  Google Scholar 

  4. Davis J, Vaughan DH, Cardosi MF (1998) Modification of catechol polymer redox properties during electropolymerization in the presence of aliphatic amines. Electrochim Acta 43:291–300

    Article  CAS  Google Scholar 

  5. Solovskij MV, Denisov VM, Panarin EF, Petukhova NA, Purkina AV (1996) Synthesis of water-soluble biologically active phenol (or catechol) containing copolymers of N-vinyl-2-pyrrolidine. Macromol Chem Phys 197:2035–2046

    Article  CAS  Google Scholar 

  6. Akkara JA, Kaplan LD, John VT, Tripathy SK (1996) In: Salamone JC (ed) The polymeric materials encyclopedia, vol 3. CRC Press, New York, pp 2116–2125

  7. Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enzyme Microbiol Technol 23:432–437

    Article  CAS  Google Scholar 

  8. Uyama H, Kobayashi S (2002) Enzyme-catalyzed polymerization to functional polymers. J Mol Catal B 19–20:117–127

    Article  Google Scholar 

  9. Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson L (1999) Enzymatically synthesized conducting polyaniline. J Am Chem Soc 121:71–78

    Article  CAS  Google Scholar 

  10. Nabid MR, Entezami AA (2003) Enzymatic synthesis and characterization of a water-soluble, conducting poly(o-toluidine). Eur Polym J 39:1169–1175

    Article  CAS  Google Scholar 

  11. Samuelson LA, Anagnostopoulos A, Alva KS, Kumar J, Tripathy SK (1998) Biologically derived conducting and water soluble polyaniline. Macromolecules 31:4376–4378

    Article  CAS  Google Scholar 

  12. Nagarajan R, Tripathy S, Kumar J, Bruno FF, Samuelson LA (2000) An enzymatically synthesized conducting molecular complex of polyaniline and poly(vinylphosphonic acid). Macromolecules 33:9542–9547

    Article  CAS  Google Scholar 

  13. Nabid MR, Sedghi R, Entezami AA (2007) Enzymatic oxidation of alkoxyanilines for preparation of conducting polymers. J Appl Polym Sci 103:3724–3729

    Article  CAS  Google Scholar 

  14. Akkara JA, Senecal KJ, Kaplan DLJ (1991) Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. J Polym Sci Polym Chem 29:1561–1574

    Article  CAS  Google Scholar 

  15. Ikada R, Uyama H, Kobayashi S (1996) Novel synthetic pathway to a poly(phenylene oxide). Laccase-catalyzed oxidative polymerization of syringic acid. Macromolecules 29:3053–3054

    Article  Google Scholar 

  16. Milstein O, Nicklas B, Hüttermann A (1989) Oxidation of aromatic compounds in organic solvents with laccase from Trametes versicolor. Appl Microbiol Biotechnol 31:70–74

    Article  CAS  Google Scholar 

  17. Okumura S, Iwai M, Tominaga Y (1984) Synthesis of ester oligomer by Aspergillus niger Lipase. Agric Biol Chem 48:2805–2808

    CAS  Google Scholar 

  18. Groves JT, Gross Z (1995) On the mechanism of epoxidation and hydroxylation catalyzed by iron porphyrins. Evidence for non-intersecting reaction pathway. In: Kessissoglon DP (ed) Bioinorganic chemistry. Kluwer, The Netherlands, pp 39–47

    Google Scholar 

  19. Nabid MR, Sedghi R, Entezami AA (2006) Synthesis of conducting water-soluble polyaniline with iron(III) porphyrin. J Appl Polym Sci 102:2929–2934

    Article  CAS  Google Scholar 

  20. Nabid MR, Zamiraei Z, Sedghi R, Safari N (2009) Cationic metalloporphyrins for synthesis of conducting, water-soluble polyaniline. React Funct Polym 69:319–324

    Article  CAS  Google Scholar 

  21. Little RG, Anton JA, Loach PA, Ibers JA (1975) Synthesis of some substituted tetraarylporphyrins. J Heterocycl Chem 12:343–349

    Article  CAS  Google Scholar 

  22. Datta-Gupta N, Fanning JC, Dickens LL (1976) Some metal complexes of α, β, γ, δ-tetra-(4-pyridyl) porphin. J Coord Chem 5:201–207

    Article  CAS  Google Scholar 

  23. Fleischer EB, Palmer JM, Srivastava TS, Chatterjee A (1971) Thermodynamic and kinetic properties of an iron-porphyrin system. J Am Chem Soc 93:3162–3167

    Article  CAS  Google Scholar 

  24. Dunford HB (1991) Horseradish peroxidase: structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol 2. CRC Press, Boca Raton, FL, pp 1–24

  25. Goh YM, Nam W (1999) Significant electronic effect of porphyrin ligand on the reactivities of high-valent iron(IV) oxo porphyrin cation radical complexes. Inorg Chem 38:914–920

    Article  CAS  Google Scholar 

  26. Traylor TG, Kim C, Fann WP, Perrin CL (1998) Reactions of hydroperoxides with iron(III) porphyrins: heterolytic cleavage followed by hydroperoxide oxidation. Tetrahedron 54:7977–7986

    Article  CAS  Google Scholar 

  27. McMurry TJ, Groves JT (1986) Metalloporphyrin models for cytochrome P-450. In: Ortiz de montellano PR (ed) Cytochrome P-450: structure, mechanism, and biochemistry (B). Plenum, New York, pp 1–28

    Google Scholar 

  28. Amarnath CA, Palaniappa S, Puzari A, Rannou P, Pron A (2007) Solution processible and conductive polyaniline via protonation with 4,4-bis(4-hydroxy phenyl)-valeric acid: preparation and characterization. Mater Lett 61:4204–4207

    Article  CAS  Google Scholar 

  29. Chen SA, Hwang GW (1997) Structure and properties of the water-soluble self-acid-doped conducting polymer blends: sulfonic acid ring-substituted polyaniline/poly(vinyl alcohol) and poly(aniline-co-N-propanesulfonic acid aniline)/poly(vinyl alcohol). Polymer 38:3333–3346

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Nabid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabid, M.R., Zamiraei, Z., Sedghi, R. et al. Synthesis and characterization of poly(catechol) catalyzed by porphyrin and enzyme. Polym. Bull. 64, 855–865 (2010). https://doi.org/10.1007/s00289-009-0174-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0174-4

Keywords

Navigation