Skip to main content
Log in

Effect of temperature and water on microphase separation of PCL–PEO–PCL triblock copolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Microphase separation of poly(ε-caprolactone-ethylene oxide-ε-caprolactone) (PCL–PEO–PCL), with block number-average molecular weights of 9,100–30,400–9,100 g/mol, was studied. Cylindrical morphology was observed in a solvent-cast sample. When the as-cast sample was heated above the melting points of both PEO and PCL blocks, a change in morphology was observed by Small Angle X-ray Scattering (SAXS). When this sample was cooled to room temperature in the ambient atmosphere, another morphology (lamellae) was observed with SAXS and Atomic Force Microscopy (AFM). This asymmetric change in morphology suggests a role of kinetics (microphase separation and crystallization) in determining the observed microstructures. Addition of water at room temperature also affected microphase separation of the block copolymer due to hydrophilicity of PEO. As the polymer concentration decreases from 100 to 60%, the morphology changes from cylinders to lamellae. Differential Scanning Calorimetry (DSC) data show that water addition decreases PEO crystallinity but PCL crystallinity remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoo Y, Kim D-C, Kim T-Y (2009) Preparation and characterization of enalapril maleate-loaded nanoparticles using amphiphilic diblock copolymers. J Appl Polym Sci 74:2856–2867

    Google Scholar 

  2. Ge H, Hu Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang CJ (2002) Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. Pharm Sci 91:1463–1473

    Article  CAS  Google Scholar 

  3. Yu Z, Liu L (2005) Microwave-assisted synthesis of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block co-polymers and use as matrices for sustained delivery of ibuprofen taken as model drug. J Biomater Sci Polym edn 16:957–971

    Article  CAS  Google Scholar 

  4. Gan Z, Jim TF, Li M, Yuer Z, Wang S, Wu C (1999) Enzymic biodegradation of poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications. Macromolecules 32:590–594

    Article  CAS  Google Scholar 

  5. Zhao Y, Hu T, Lv Z, Wang S, Wu C (1999) Laser light-scattering studies of poly(caprolactone-b-ethylene oxide-b-caprolactone) nanoparticles and their enzymatic biodegradation. J Polym Sci B 37:3288–3293

    Article  CAS  Google Scholar 

  6. Nie T, Zhao Y, Xie Z, Wu C (2003) Micellar formation of poly(caprolactone-block-ethylene oxide-block- caprolactone) and its enzymatic biodegradation in aqueous dispersion. Macromolecules 36:8825–8829

    Article  CAS  Google Scholar 

  7. Gan Z, Jiang B, Zhang J (1996) Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer. I. Isothermal crystallization and melting behavior. J Appl Polym Sci 59:961–967

    Article  CAS  Google Scholar 

  8. Gan Z, Zhang J, Jiang B (1997) Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymers. II. Nonisothermal crystallization and melting behavior. J Appl Polym Sci 63:1793–1804

    Article  CAS  Google Scholar 

  9. Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E (1998) Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers. Polymer 39:1631–1636

    Article  CAS  Google Scholar 

  10. An JH, Kim HS, Chung DJ, Lee DS, Kim S (2001) Thermal behavior of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block copolymers. J Mater Sci 36:715–722

    Article  CAS  Google Scholar 

  11. Piao L, Dai Z, Deng M, Chen X, Jing X (2003) Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer 44:2025–2031

    Article  CAS  Google Scholar 

  12. Loh XJ, Colin Sng KB, Li J (2008) Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 29(22):3185–3194

    Article  CAS  Google Scholar 

  13. Zhao Y, Liang H, Wang S, Wu C (2001) Self-assembly of poly(caprolactone-b-ethylene oxide-b-caprolactone) via a microphase inversion in water. J Phys Chem B 105:848–851

    Article  CAS  Google Scholar 

  14. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B (2005) Caprolactonic poloxamer analog: PEG–PCL–PEG. Biomacromolecules 6:885–890

    Article  CAS  Google Scholar 

  15. Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B (2005) Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 38:5260–5265

    Article  CAS  Google Scholar 

  16. Kang J, Beers KJ (2006) Synthesis and characterization of PCL-b-PEO-b-PCL-based nanostructured and porous hydrogels. Biomacromolecules 7:453–458

    Article  CAS  Google Scholar 

  17. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27:4145–4149

    Article  CAS  Google Scholar 

  18. Yilgor I, Steckle WP Jr, Yilgor E, Freelin GR, Riffle JS (1989) Novel triblock siloxane copolymers: synthesis, characterization, and their use as surface modifying additives. J Polym Sci A Polym Chem 27(11):3673–3690

    Article  CAS  Google Scholar 

  19. Cerrai P, Tricoli M, Andruzzi F, Paci M, Paci M (1989) Polyether-polyester block copolymers by noncatalyzed polymerization of ε-caprolactone with polyethylene glycol. Polymer 30(2):338–343

    Article  CAS  Google Scholar 

  20. Dennison KA (1986) Radiation crosslinked poly(ethylene oxide) hydrogel membranes, Chap 3. Ph.D. Thesis, Massachusetts Institue of Technology

  21. Chu B, Hsiao BS (2001) Small-angle X-ray scattering of polymers. Chem Rev 101:1727–1761

    Article  CAS  Google Scholar 

  22. Bates FS, Fredrickson GH (1999) Block copolymers-designer soft materials. Phys Today 52:32–38

    Article  CAS  Google Scholar 

  23. Nojima S, Hashizume K, Rohadi A, Sasaki S (1997) Crystallization of ε-caprolactone blocks within a crosslinked microdomain structure of poly(ε-caprolactone)-block-polybutadiene. Polymer 38:2711–2718

    Article  CAS  Google Scholar 

  24. Perret R, Skoulios A (1972) Crystallization of trisequenced poly(ε-caprolactone)/poly(oxyethylene)/poly(ε-caprolactone) copolymers. I. Copolymers with sequences of very different lengths. Makromol Chem 162:147–162

    Article  CAS  Google Scholar 

  25. Sharples A (1966) Introduction to polymer crystallization, Chap 9. Edward Arnold, London

Download references

Acknowledgments

We thank Mr. Wright of the High Voltage Research Laboratory at MIT for assistance in conducting the electron beam crosslinking experiments, and GPC analysis was gratefully provided by Dr. Erdodi at the University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmee Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Beers, K.J. Effect of temperature and water on microphase separation of PCL–PEO–PCL triblock copolymers. Polym. Bull. 63, 723–734 (2009). https://doi.org/10.1007/s00289-009-0169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0169-1

Keywords

Navigation