Skip to main content
Log in

SBS nanocomposites as toughening agent for polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The toughening of polypropylene [PP] with styrene–butadiene–styrene rubber [SBS]/montmorillonite [MMT] nanocomposites was investigated with respect to morphological, thermal, and mechanical properties. The MMT/SBS nanocomposites were prepared in an internal mixer, using an epoxidized SBS [SBSe] to investigate its effect as a compatibilizer. The MMT/SBS nanocomposite was added to PP up to 10 wt%, aiming at material toughening. Transmission electron microscopy (TEM) revealed MMT induced dispersed-phase reductions when compared to typical PP/SBS blends. In addition, changes in the PP crystallization process were observed in the presence of the nanocomposite. Surprisingly, the use of nanofiller, combined with SBSe compatibilizer agent, increased the PP impact strength by about 60%, with no reduction in the tensile module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hong CK, Kim MJ, Oh SH, Lee YS, Nah C (2008) Effects of polypropylene-g-(maleic anhydride/styrene) compatibilizer on mechanical and rheological properties of polypropylene/clay nanocomposites. J Ind Eng Chem 14:236

    CAS  Google Scholar 

  2. Denac M, Smit I, Musil V (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Struct Compos Part A Appl Sci Manuf Compos: Part A 36:1094–1101

    Article  Google Scholar 

  3. Farahani RD, Ramazani ASA (2008) Melt preparation and investigation of properties of toughened Polyamide 66 with SEBS-g-MA and their nanocomposites. Mater Des 29:105–111

    Google Scholar 

  4. Paul DR, Robenson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  5. Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48:966–974

    Article  CAS  Google Scholar 

  6. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2009) Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. J Polym Sci: Part B Polym Phys 40:1199–1209

    Google Scholar 

  7. Castel CD, Bianchi O, Oviedo MA, Liberman SA, Mauler RS, Oliveira RVB (2009) The influence of interfacial agents on the morphology and viscoelasticity of PP/MMT nanocomposites. Mater Sci Eng C 29:602–606

    Google Scholar 

  8. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63

    Article  Google Scholar 

  9. Arroyo M, López-Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453

    Article  CAS  Google Scholar 

  10. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhang L, Li Y, Xu H (2005) Styrene-butadiene-styrene/montmorillonite nanocomposites synthesized by anionic polymerization. J Appl Polym Sci 99:2273–2278

    Article  Google Scholar 

  12. Arroyo M, López-Manchado MA, Valentin JL, Carretero J (2007) Morphology/behaviour relationship of nanocomposites based on natural rubber blends. Comp Sci Technol 67:1330

    Article  CAS  Google Scholar 

  13. Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956

    Article  CAS  Google Scholar 

  14. Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    Article  CAS  Google Scholar 

  15. Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975

    Article  CAS  Google Scholar 

  16. Khatua BB, Lee DJ, Kim HY, Kim JK (2004) Effect of organoclay platelets on morphology of Nylon-6 and Poly(ethylene-ran-propylene) rubber blends. Macromolecules 37:2454–2459

    Article  CAS  Google Scholar 

  17. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39:4793–4801

    Article  CAS  Google Scholar 

  18. Halimatudahliana IH, Nasir M (2002) Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Polym Test 21:263

    Article  CAS  Google Scholar 

  19. Halimatudahliana IH, Nasir M (2002) The effect of various compatibilizers on mechanical properties of polystyrene/polypropylene blend. Polym Test 21:163

    Article  Google Scholar 

  20. Sung YT, Han MS, Hyun JC, Kim WN, Lee HS (2003) Rheological properties and interfacial tension of polypropylene-poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687

    Article  CAS  Google Scholar 

  21. Macaúbas PHP, Demarquette NR (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554

    Article  Google Scholar 

  22. Li Y, Hu S, Sheng J (2007) Evolution of phase dimensions and interfacial morphology of polypropylene/polystyrene compatibilized blends during mixing. Eur Polym J 43:561–572

    Article  Google Scholar 

  23. Souza AMC, Dermaquette NR (2002) Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends. Polymer 43:3959–3967

    Article  CAS  Google Scholar 

  24. Jacobi MM, Santin CK, Schuster RHV (2004) Study of the epoxidation of polydienes rubbers II. Influence of microstructure on the epoxidation of BR with performic acid. Kautsch Gummi Kunstst 57:82

    CAS  Google Scholar 

  25. Coutinho PA, Silva PA, Jacobi MM, Schneider LK, Barbosa RV, Cassinelli JRD, Mauler RS (2005) Processo para obtenção de material compósito em que uma nanocarga é aplicada a um polímero e material compósito resultante. Petroflex Indústria e Comércio S/A. INPI, Brazil, Patent no PI0701345-0

  26. Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 41:1589–1596

    Article  CAS  Google Scholar 

  27. Han CD (1981) Multiphase flow in polymer processing. Academic Press, London

    Google Scholar 

  28. Kontopoulou M, Liu Y, Austin JR, Parent JS (2007) The dynamics of montmorillonite clay dispersion and morphology development in immiscible ethylene-propylene rubber/polypropylene blends. Polymer 48:4520–4528

    Article  CAS  Google Scholar 

  29. Wang K, Wang C, Li J, Su J, Zhang Q, Du R, Fu Q (2007) Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites. Polymer 48:2144

    Article  CAS  Google Scholar 

  30. Li Y, Wei G, Sue H (2002) Hybrid self-assembled multilayer film formed by alternating layers of H4SiW12O40 and 1,10—diaminodecane (DAD). J Mater Sci 37:2447–2459

    Article  CAS  Google Scholar 

  31. Balakrishnan S, Start PR, Raghavan D, Hudson SD (2005) The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46:11255–11262

    Article  CAS  Google Scholar 

  32. Kelnar I, Khunová V, Kotek J, Kaprálková L (2007) Effect of clay treatment on structure and mechanical behaviour of elastomer – containing polyamide 6 nanocomposite. Polymer 48:5332–5339

    Article  CAS  Google Scholar 

  33. Contreras V, Cafiero M, Da Silva S, Rosales C, Perera R, Matos M (2006) Characterization and tensile properties of ternary blends with PA-6 nanocomposites. Polym Eng Sci 46:1111–1120

    Article  CAS  Google Scholar 

  34. Wang Y, Zhang Q, Fu Q (2003) Compatibilization of immiscible poly(propylene)/polystyrene blends using clay. Macromol Rapid Commun 24:231

    Article  CAS  Google Scholar 

  35. Zebarjad SM, Lazzeri A, Bagheri R, Reihani SMS, Frounch M (2003) Fracture mechanism under dynamic loading of elastomer-modified polypropylene. Mater Lett 57:2733–2741

    Article  CAS  Google Scholar 

  36. Jain S, Goossens H, Duin MV, Lemstra P (2005) Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer 46:8805–8818

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Petroflex Indústria e Comércio S/A, Braskem S/A, CNPq, Pronex/Fapergs, and Finep for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. B. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, P.A., Jacobi, M.M., Schneider, L.K. et al. SBS nanocomposites as toughening agent for polypropylene. Polym. Bull. 64, 245–257 (2010). https://doi.org/10.1007/s00289-009-0159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0159-3

Keywords

Navigation