Skip to main content
Log in

Room temperature preparation of highly crosslinked microgels

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of highly crosslinked microgels has been prepared at room temperature via photoinitiated polymerisation in dilute solution using methyl methacrylate (MMA) and ethylene dimethacrylate (EDMA), respectively as non-functional monomer and crosslinker in N,N-dimethylformamide (DMF) as a solvent. The effect of monomer concentration and EDMA/MMA ratio on the yield, molecular weight and microgel size was studied and the data were compared to those previously obtained for microgels of similar composition prepared by thermal initiation. This mild polymerisation method yields better results compared to the more conventional thermal method, since it allows higher monomer concentrations to be employed as well as a better microgel size control. Consequently, the method can be advantageously used for the preparation of highly crosslinked microgels with improved properties, particularly useful, e.g. for molecular imprinting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker WO (1949) Microgel, a new macromolecule. Ind Eng Chem 41:511–520

    Article  CAS  Google Scholar 

  2. Staudinger H, Husemann E (1935) Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol. Chem Ber 68:1618–1634

    Google Scholar 

  3. Funke W, Okay O, Joos-Müller B (1998) For recent comprehensive reviews on microgels. Intramolecularly crosslinked macromolecules with globular structure. Adv Polym Sci 136:139–234

    Article  Google Scholar 

  4. Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25

    Article  CAS  Google Scholar 

  5. Pelton RH (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  6. Saatweber D, Vogt-Birnbrich B (1996) Microgels in organic coating. Prog Org Coat 28:33–41

    Article  CAS  Google Scholar 

  7. Luthra AK, Williams A (1995) Ester fission catalysed by microgels possessing hydroxamic acid groups: structure–reactivity studies. J Mol Catal A Chem 95:83–92

    Article  CAS  Google Scholar 

  8. Otero C, Robledo L, Alcantara AR (1995) Study of the stabilization of pure lipases: comparison of two different lipase–microgel derivatives. J Mol Catal B Enzym 1:23–28

    Article  CAS  Google Scholar 

  9. Ford WT, Lee J-J, Yu H, Ackerson BJ, Davis KA (1995) Cationic latexes as catalytic media. Macromol Symp 92:333–343

    CAS  Google Scholar 

  10. Ohkubo K, Funakoshi Y, Sagawa T (1996) Catalytic activity of a novel water-soluble cross-linked polymer imprinted by a transition-state analogue for the stereoselective hydrolysis of enantiomeric amino acid esters. Polymer 37:3993–3995

    Article  CAS  Google Scholar 

  11. Kihara N, Kanno C, Fukutomi T (1997) Synthesis and properties of microgel bearing a mercapto group. J Polym Sci A 35:1443–1451

    Article  CAS  Google Scholar 

  12. Schunicht C, Biffis A, Wulff G (2000) Microgel-supported oxaborolidines: novel catalysts for enantioselective reduction. Tetrahedron 56:1693–1699

    Article  CAS  Google Scholar 

  13. Spanka C, Clapham B, Janda KD (2002) Preparation of new microgel polymers and their application as support in organic synthesis. J Org Chem 67:3045–3050

    Article  CAS  Google Scholar 

  14. Shimomura O, Clapham B, Spanka C, Mahajan S, Janda KD (2002) Application of microgels as polymer supports for organic synthesis: preparation of a small phthalide library, a scavenger, and a borohydride reagent. J Comb Chem 4:436–441

    Article  CAS  Google Scholar 

  15. Kwon YJ, James E, Shastri N, Frechet JMJ (2005) In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci USA 102:18264–18268

    Article  CAS  Google Scholar 

  16. Das M, Mardyani S, Chan WCW, Kumacheva E (2006) Biofunctionalized pH-responsive microgels for cancer cell targeting: rational design. Adv Mater 18:80–83 references cited therein

    Article  CAS  Google Scholar 

  17. Antonietti M, Gröhn F, Hartmann J, Bronstein L (1997) Nonclassical shapes of noble-metal colloids by synthesis in microgel nanoreactors. Angew Chem Int Ed 36:2080–2083

    Article  CAS  Google Scholar 

  18. Biffis A, Orlandi N, Corain B (2003) Microgel-stabilised metal nanoclusters: size control by microgel nanomorphology. Adv Mater 15:1551–1555

    Article  CAS  Google Scholar 

  19. Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472

    Article  CAS  Google Scholar 

  20. Pich A, Hain J, Lu Y, Boyko V, Prots Y, Adler H-J (2005) Hybrid microgels with ZnS inclusions. Macromolecules 38:6610–6619

    Article  CAS  Google Scholar 

  21. Lyon LA, Meng Z, Singh N, Sorrell CD, St. John A (2009) Thermoresponsive microgel-based materials. Chem Soc Rev 38:865–874

    Article  CAS  Google Scholar 

  22. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  23. Biffis A, Graham NB, Siedlaczek G, Stalberg S, Wulff G (2001) The synthesis, characterization and molecular recognition properties of imprinted microgels. Macromol Chem Phys 202:163–171

    Article  CAS  Google Scholar 

  24. Maddock SC, Pasetto P, Resmini M (2004) Novel imprinted soluble microgels with hydrolytic catalytic activity. Chem Commun 53:6–537

    Google Scholar 

  25. Hunt CE, Pasetto P, Ansell RJ, Haupt K (2006) A fluorescence polarisation molecular imprint sorbent assay for 2, 4-D: a non-separation pseudo-immunoassay. Chem Commun 175:4–1756

    Google Scholar 

  26. Wulff G, Chong BO, Kolb U (2006) Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew Chem Int Ed 45:2955–2958

    Article  CAS  Google Scholar 

  27. Chen Z, Hua Z, Wang J, Guan Y, Zhao M, Li Y (2007) Molecularly imprinted soluble nanogels as a peroxidase-like catalyst in the oxidation reaction of homovanilic acid under aqueous conditions. Appl Catal A Gen 328:252–258

    Article  CAS  Google Scholar 

  28. Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M (2008) The first example of molecularly imprinted nanogels with aldolase type I activity. Chem Eur J 14:7059–7065

    CAS  Google Scholar 

  29. Sellergren B (ed) (2001) Molecularly imprinted polymers. Elsevier, Amsterdam

    Google Scholar 

  30. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2003) Molecular imprinting from fundamentals to applications. Wiley, Weinheim

    Google Scholar 

  31. Barrett KEJ, Thomas HR (1975) Kinetics and mechanism of dispersion polymerization. In: Barrett KEJ (ed) Dispersion polymerization in organic media, chap 4. Wiley, London

    Google Scholar 

  32. Huang Y, Seitz U, Funke W (1985) Synthesis and characterization of bisacrylamide microgels containing sulfo groups. Makromol Chem 186:273–281

    Article  CAS  Google Scholar 

  33. Ya HY, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7:155–178

    Article  Google Scholar 

  34. Stalberg S (1997) Synthese uns Charakterisierung von geprägten Mikrogelen zur molekularen Erkennung von Zuckern. Diplomarbeit, University of Düsseldorf

  35. Sun X, Chiu YY, Lee LJ (1997) Microgel formation in the free radical cross-linking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA). Ind Eng Chem Res 36:1343–1351

    Article  CAS  Google Scholar 

  36. Chiu YY, Lee LJ (1995) Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA). I. Experimental. J Polym Sci A 33:257–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from European Community through the Marie Curie RTN “NASCENT” (contract no. MRTN-CT-2006-033873) is most gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Biffis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorakova, G., Biffis, A. Room temperature preparation of highly crosslinked microgels. Polym. Bull. 64, 107–114 (2010). https://doi.org/10.1007/s00289-009-0134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0134-z

Keywords

Navigation