Skip to main content

Advertisement

Log in

Fabrication of ultrafine fibers of poly(γ-glutamic acid) and its derivative by electrospinning

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Poly(γ-glutamic acid) (PGA) was successfully electrospun by the addition of poly(ethylene glycol) (PEG) and Triton X-100 in its aqueous solution to produce the PGA non-woven mat of the ultrafine fibers. The average fiber diameter was in the range between 200 nm and 2 μm. The fiber mat was quickly soluble in water due to the large surface area of the fibers. The electrospinning of PGA butyl ester with the esterification degree of 61% in 1,1,1,3,3,3-hexafluoro-2-propanol gave the water-insoluble nanofiber mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Y, Lim CT, Ramakrishna S, Huang ZM (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16:933

    Article  CAS  Google Scholar 

  2. Mugugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13:1845

    Article  Google Scholar 

  3. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603

    Article  CAS  Google Scholar 

  4. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289

    Article  CAS  Google Scholar 

  5. Moon YS, Uyama H, Inoue S, Tabata Y (2006) Fabrication of non-woven mats of gelatin/poly(L-lactic acid) composites by electrospinning and their application for scaffold of cell proliferation. Chem Lett 35:564

    Article  CAS  Google Scholar 

  6. Xie J, Wang CH (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23:1817

    Article  CAS  Google Scholar 

  7. Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNS. J Control Release 120:111

    Article  CAS  Google Scholar 

  8. Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30:440

    Article  CAS  Google Scholar 

  9. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67B:675

    Article  CAS  Google Scholar 

  10. Buchko CJ, Kozloff KM, Martin DC (2001) Surface characterization of porous, biocompatible protein polymer thin films. Biomaterials 22:1289

    Article  CAS  Google Scholar 

  11. Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv Mater 11:1362

    Article  CAS  Google Scholar 

  12. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027

    Article  CAS  Google Scholar 

  13. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232

    Article  CAS  Google Scholar 

  14. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724

    Article  CAS  Google Scholar 

  15. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361

    Article  CAS  Google Scholar 

  16. Li J, He A, Han CC, Fang D, Hsiao BS, Chu B (2006) Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromol Rapid Commun 27:114

    Article  CAS  Google Scholar 

  17. Li J, He A, Zheng J, Han CC (2006) Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 7:2243

    Article  CAS  Google Scholar 

  18. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, Clark RAF, Rafailovich MH (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782

    Article  CAS  Google Scholar 

  19. Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934

    Article  CAS  Google Scholar 

  20. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589

    Article  CAS  Google Scholar 

  21. Geng X, Kwon OH, Jang JH (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427

    Article  CAS  Google Scholar 

  22. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285:855

    Article  CAS  Google Scholar 

  23. Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polymers 67:403

    Article  CAS  Google Scholar 

  24. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097

    Article  CAS  Google Scholar 

  25. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415

    Article  CAS  Google Scholar 

  26. Nie H, He A, Zheng J, Xu S, Li J, Han CC (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9:1362

    Article  CAS  Google Scholar 

  27. Bhattarai N, Li Z, Edmondson D, Zhang M (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18:1463

    Article  CAS  Google Scholar 

  28. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3:1233

    Article  CAS  Google Scholar 

  29. Sung MH, Park C, Kim CJ, Poo HR, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Record 5:352

    Article  CAS  Google Scholar 

  30. Borbely M, Nagasaki Y, Borbely J, Fan K, Bhogle A, Sevoian M (1994) Biosynthesis and chemical modification of poly(γ-glutamic acid). Polym Bull 32:127

    Article  CAS  Google Scholar 

  31. Kubota H, Nambu Y, Endo T (1995) Convenient esterification of poly(γ-glutamic acid) produced by microorganism alkyl halides and their thermal properties. J Polym Sci Part A Polym Chem 33:85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Program for Japan-Korea Joint Research Project, JSPS and KOSEF, and Regional New Consortium Projects, METI, Japan. We also thank Mr. Y. Kunihiro, Mr. T. Mino, and Ms. M. Higasa for screening of the electrospinning conditions and sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Uyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EH., Uyama, H., Kwon, O.H. et al. Fabrication of ultrafine fibers of poly(γ-glutamic acid) and its derivative by electrospinning. Polym. Bull. 63, 735–742 (2009). https://doi.org/10.1007/s00289-009-0112-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0112-5

Keywords

Navigation