Skip to main content
Log in

Influence of poly(ethylene glycol)/montmorillonite hybrids on the rheological behaviors and mechanical properties of polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effects of poly(ethylene glycol) (PEG)/montmorillonite (MMT) hybrids on the phase morphology, rheological behaviors and mechanical properties of polypropylene (PP) were investigated. The analysis of transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) indicated that the PEG modified montmorillonite was intercalated and well dispersed into PP matrix. It was found that the addition of the PEG/MMT hybrids in PP matrix lead to a significant reduction of melt viscosity and enhancement in izod-notched impact strength and elongation at break, except that the tensile strength was without much obvious change. A quantitative analysis indicated that MMT was intercalated by PEG, which was responsible for the melt viscosity reduction of PP matrix. Differential scanning calorimetry (DSC) analysis indicated that the addition of PEG/MMT hybrids induced the formation of β-crystal of PP. Polarized light micrographs (PLM) analysis indicated that the dispersed MMT, which acted as a nucleating agent, lowered the spherulite dimension and increased the spherulite number, resulting in high izod-notched impact strength and elongation at break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516

    Article  CAS  Google Scholar 

  2. Lin ZH, Peng M, Zheng Q (2004) Isothermal crystallization behavior of polypropylene catalloys. J Appl Polym Sci 93:877

    Article  CAS  Google Scholar 

  3. Gianelli W, Ferrara G, Camino G, Pellegatti G, Rosenthal J, Trombini RC (2005) Effect of matrix features on polypropylene layered silicate nanocomposites. Polymer 46:7037

    Article  CAS  Google Scholar 

  4. Paul MA, Alexandre M, Degee P, Henrist C (2003) New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443

    Article  CAS  Google Scholar 

  5. Michael JS, Abdulwahab S, Almusallam KF (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864

    Article  Google Scholar 

  6. He AH, Wang LM, Li JX, Dong JY, Han CC (2006) Preparation of exfoliated isotactic polypropylene/alkyl-triphenylphosphonium-modified montmorillonite nanocomposites via in situ intercalative polymerization. Polymer 47:1767

    Article  CAS  Google Scholar 

  7. Ding C, He H, Guo BC, Jia DM (2008) Structure and properties of polypropylene/clay nanocomposites compatibilized by solid-phase grafted polypropylene. Polym Compos 29:698

    Article  CAS  Google Scholar 

  8. Zhang Q, Wang Y, Fu Q (2003) Shear-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 41:1

    Article  CAS  Google Scholar 

  9. Shi D, Yu W, Li KY, Ke Z, Yin JH (2007) An investigation on the dispersion of montmorillonite primary particles in PP matrix. Eur Polym J 43:3250

    Article  CAS  Google Scholar 

  10. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30:6333

    Article  CAS  Google Scholar 

  11. Vaia RA, Lincoln D, Wang ZG, Hsiao BS (2000) Crystallization of polymers in confined environments: structural development of semi-crystalline polymer-layered silicate nanocomposites. Polym Mater Sci Eng 82:257

    CAS  Google Scholar 

  12. Hwu JM, Jiang GJ (2005) Preparation and characterization of polypropylene-montmorillonite nanocomposites generated by in situ metallocene catalyst polymerization. J Appl Polym Sci 95:1228

    Article  CAS  Google Scholar 

  13. Tang Y, Hu Y, Wang SF (2003) Intumescent flame retardant-montmorillonite synergism in polypropylenelayered silicate nanocomposites. Polym Int 52:1396

    Article  CAS  Google Scholar 

  14. Gregoriou VG, Kandilioti G, Bollas ST (2005) Chain conformational transformations in syndiotactic polypropylene/layered silicate nanocomposites during mechanical elongation and thermal treatment. Polymer 46:11340

    CAS  Google Scholar 

  15. Chung MJ, Jang LW, Shim JH (2005) Preparation and characterization of maleic anhydride-g-polypropylene/diamine-modified clay nanocomposites. J Appl Polym Sci 95:307

    Article  CAS  Google Scholar 

  16. Hu Y, Tang Y, Song L (2006) Poly (propylene)/clay nanocomposites and their application in flame retardancy. Polym Adv Technol 17:235

    Article  CAS  Google Scholar 

  17. Xu WB, Liang GD, Wang W (2003) PP–PP-g-MAH–Org-MMT nanocomposites. I. Intercalation behavior and microstructure. J Appl Polym Sci 88:3225

    Article  CAS  Google Scholar 

  18. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Structure and properties of polypropylene-based nanocomposites: Effect of PP-g-MA to organoclay ratio. Polymer 48:5308

    Article  CAS  Google Scholar 

  19. Gilman JR, Jackson CL, Morgan BA (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866

    Article  CAS  Google Scholar 

  20. Dumont MJ, Emond JP, Bousmina M (2007) Barrier properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 103:618

    Article  CAS  Google Scholar 

  21. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728

    Article  CAS  Google Scholar 

  22. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097

    Article  CAS  Google Scholar 

  23. Li J, Zhou CX, Wang G, Zhao DL (2003) Study on rheological behavior of polypropylene/clay nanocomposites. J Appl Polym Sci 89:3609

    Article  CAS  Google Scholar 

  24. Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of poly styrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641

    CAS  Google Scholar 

  25. Sun TC, Chen FH, Dong X, Han CC (2008) Rheological studies on the quasi-quiescent crystallization of polypropylene nanocomposite. Polymer 49:2717

    Article  CAS  Google Scholar 

  26. Gai JG, Li HL (2007) Influence of organophilic montmorillonite and polypropylene on the rheological behaviors and mechanical properties of ultrahigh molecular weight polyethylene. J Appl Polym Sci 105:1200

    Article  CAS  Google Scholar 

  27. Aranda P, Ruiz-Hitzky E (1992) Poly(ethylene oxide)-silicate intercalation materials. Chem Mater 4:1395

    Article  CAS  Google Scholar 

  28. Greeland DJ (1963) Adsorption of poly(vinyl alcohols) by montmorillonite. J Colloid Sci 18:647

    Article  Google Scholar 

  29. Gai JG, Li HL (2007) Ultrahigh molecular weight polyethylene/polypropylene/organo-montmorillonite nanocomposites: phase morphology, rheological, and mechanical properties. J Appl Polym Sci 106:3023

    Article  CAS  Google Scholar 

  30. Liu XH, Wu QJ (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 42:10013

    Article  CAS  Google Scholar 

  31. Dragaun H, Hubeny H, Huschik H (1977) Shear-induced β-form crystallization in isotactic polypropylene. J Polym Sci Part B Polym Phys 15:1779

    CAS  Google Scholar 

  32. Samueles RJ (1975) Quantitative structural characterization of the melting behavior of isotactic polypropylene. J Polym Sci Part B Polym Phys 13:1417

    Google Scholar 

Download references

Acknowledgment

National Basic Research Program of China (2005CB623800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Chen, J. & Li, H. Influence of poly(ethylene glycol)/montmorillonite hybrids on the rheological behaviors and mechanical properties of polypropylene. Polym. Bull. 63, 245–257 (2009). https://doi.org/10.1007/s00289-009-0085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0085-4

Keywords

Navigation