Skip to main content
Log in

Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Catalytic oxidative polymerization of 2,2′-dihydroxybiphenyl (DHBP) was performed by using Schiff base polymer-Cu (II) complex and hydrogen peroxide as catalyst and oxidant, respectively. According to size exclusion chromatography (SEC) analysis, the number-average molecular weight (M n), weight-average molecular weight (M w) and polydispersity index (PDI) values of poly (2,2′-dihydroxybiphenyl) (PDHBP) were found to be 37,500, 90,000 g mol−1 and 2.4, respectively. The thermal degradation kinetics was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at four different heating rates: 5, 10, 15 and 20 °C min−1. The derivative thermogravimetry curves of PDHBP showed that its thermal degradation process had one weight-loss step. The apparent activation energies of thermal decomposition for PDHBP as determined by Tang, Flynn–Wall–Ozawa (FWO), Kissenger–Akahira–Sunose (KAS), Coats–Redfern (CR) and Invariant kinetic parameter (IKP) methods were 109.1, 109.0, 110.0, 108.4 and 109.8 kJ mol−1, respectively. The mechanism function and pre-exponential factor were determined by master plots and Criado–Malek–Ortega method. The most likely decomposition process was a D n Deceleration type in terms of the CR, master plots and Criado–Malek–Ortega results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu MH, Lin ZM, Pu L (2001) Construction of an ortho-phenol polymer. Tetrahedron Lett 42(36):6235–6238

    Article  CAS  Google Scholar 

  2. Higashimura H, Kubota M, Shiga A, Kodera M, Uyama H, Kobayashi S (2000) “Radical-controlled” oxidative polymerization of 4-phenoxyphenol catalyzed by a dicopper complex of a dinucleating ligand. J Mol Catal A Chem 161:233–237

    Article  CAS  Google Scholar 

  3. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Thermo- and pH-responsive biodegradable poly(alpha-N-substituted gamma-glutamine)s. Biomacromolecules 4:1394–1399

    Article  CAS  Google Scholar 

  4. Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048

    Article  CAS  Google Scholar 

  5. Ikeda R, Maruichi N, Tonami H, Tanaka H, Uyama H, Kobayashi S (2000) Peroxidase-catalyzed polymerization of fluorine-containing phenols. J Macromol Sci Pure Appl Chem 37(9):983–995

    Article  Google Scholar 

  6. Tonami H, Uyama H, Kobayashi S, Fujita T, Taguchi Y, Osada K (2000) Chemoselective oxidative polymerization of m-ethynylphenol by peroxidase catalyst to a new reactive polyphenol. Biomacromolecules 1(2):149–151

    Article  CAS  Google Scholar 

  7. Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101(12):3793–3818

    Article  CAS  Google Scholar 

  8. Tonami H, Uyama H, Oguchi T, Higashimura H, Kobayashi S (1999) Synthesis of a soluble polyphenol by oxidative polymerization of bisphenol-A using iron-salen complex as catalyst. Polym Bull 42(2):125–129

    Article  CAS  Google Scholar 

  9. Saito K, Sun G, Nishide H (2007) Green synthesis of soluble polyphenol: oxidative polymerization of phenol in water. Green Chem Lett Rev 1(1):47–51

    Article  Google Scholar 

  10. Uyama H, Maruichi N, Tonami H, Kobayashi S (2002) Peroxidase-catalyzed oxidative polymerization of bisphenols. Biomacromolecules 3(1):187–193

    Article  CAS  Google Scholar 

  11. Oguchi T, Tawaki S, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol Rapid Commun 20(7):401–403

    Article  CAS  Google Scholar 

  12. Bilici A, Kaya İ, Doğan F (2009) Monomer/polymer Schiff base copper (II) complexes for catalytic oxidative polymerization of 2,2′-dihydroxybiphenyl. J Polym Sci Part A Polym Chem (accepted)

  13. Demir HÖ, Kaya İ, Saçak M (2008) The oxidative polycondensation of 2-[(4-pyridilmethylene)-imino]phenol by molecular O-2 in alkaline medium: synthesis and characterization. Polym Bull 60(1):37–48

    Article  CAS  Google Scholar 

  14. Demir HÖ (2006) Polymerization of pyridilazomethinphenols. PhD Thesis, Ankara University, Ankara, Turkey

  15. Flynn J, Wall L (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4(5):323–328

    Article  CAS  Google Scholar 

  16. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1888

    Article  CAS  Google Scholar 

  17. Doyle CJ (1961) Synthesis and evaluation of thermally stable polymers. II. Polymer evaluation. Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  18. Coats A, Redfern J (1964) Kinetics parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  19. Criado J, Malek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147(2):377–385

    Article  CAS  Google Scholar 

  20. Nunez L, Fraga F, Villanueva M (2000) Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer 41:4635–4641

    Article  CAS  Google Scholar 

  21. Tang W, Liu Y, Zhang CH, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408(1–2):39–43

    Article  CAS  Google Scholar 

  22. Kissinger HE (1957) Reaction kinetics in different thermal analysis. Anal Chem 29(11):1702–1709

    Article  CAS  Google Scholar 

  23. Levchik SV, Levchik GF, Lesnikovich AL (1985) Analysis and development of effective invariant kinetic-parameters finding method based on the non-isothermal data. Thermochim Acta 92:157–160

    Article  CAS  Google Scholar 

  24. Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104(46):10777–10782

    Article  CAS  Google Scholar 

  25. Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J (2002) Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A 106(12):2862–2868

    Article  CAS  Google Scholar 

  26. Wanjun T, Yuwen L, Hen Z, Zhiyong W, Cunxin W (2003) New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Cal 74(1):309–315

    Article  CAS  Google Scholar 

  27. Wanjun T, Yuwen L, Xi Y, Cunxin W (2004) Kinetic studies of the calcination of ammonium metavanadate by thermal methods. Ind Eng Chem Res 43(9):2054–2059

    Article  Google Scholar 

  28. Criado JM, Malek J, Ortega A (1989) Applicability of the master plots in kinetic-analysis of non-isothermal data. Thermochim Acta 147(2):377–385

    Article  CAS  Google Scholar 

  29. Senum GI, Yang KT (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11(13):445–447

    Google Scholar 

  30. Lesnikovich AL, Levchik SV (1985) Invariant kinetic-parameters of polybutadiene binders thermal-decomposition. J Propul Power 1(4):311–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Doğan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doğan, F., Kaya, İ. & Bilici, A. Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl). Polym. Bull. 63, 267–282 (2009). https://doi.org/10.1007/s00289-009-0084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0084-5

Keywords

Navigation