Preparation of High Flexible Composite Film of Hydroxyapatite and Chitosan

Summary

Microscale hydroxyapatite (HAp), a well-known biocompatible substance for the regeneration and reinforcement of damaged bones, was composited with chitosan as a counter-polymer to produce a film with both biocompatibility and flexibility. Homogeneously dispersed solutions of microscale HAp powder and chitosan with various concentrations of HAp and chitosan were prepared in an attempt to optimize the characteristics of the film at room temperature using a molding method. The physiochemical and morphological properties of the prepared film were analyzed by thermal gravimetric analysis, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The prepared film showed high flexibility with homogeneous distribution of chitosan powders in the whole film. The results suggest that a biocompatible film of microscale HAp can be applied in various fields, such as the surface modification of bone implants, regeneration of damaged bones, osteoporosis to improve biocompatible interface between osteoblast cells and microscale inorganic materials, and to improve the osteoconductivity of bone regeneration

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ohbayashi Y, Miyake M, Nagahata S (2000) Biomaterials 21:509

    Google Scholar 

  2. 2.

    Itoha S, Kikuchib M, Koyamac Y, Takakudac K, Shinomiyaa K, Tanaka J (2002) Biomaterials 23:3919

    Google Scholar 

  3. 3.

    Kim YG, Seob DS, Lee JK (2008) J Phys Chem Solids 69:1556

    Google Scholar 

  4. 4.

    Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Nature 414:773

    Google Scholar 

  5. 5.

    Kobayashi T, Nakamura S, Yamashita K (2001) J Biomed Mater Res 57:477

    Google Scholar 

  6. 6.

    Guo C, Liu H and Katayama I (2002) J Dent Res 81:254

  7. 7.

    Onumaa K, Yamagishi K, Oyane A (2005) J Cryst Growth 282:199

    Google Scholar 

  8. 8.

    Uchida A, Araki N, Shinto Y, Yoshikawa H, Ono K, Kurisaki E (1990) J Bone Joint Surg 72-B:298

    Google Scholar 

  9. 9.

    Jansen JA, De Ruijter JE, Schaeken HG, Van Der Waerden JPCMA, Planell JA, Driessens FCM (1995) J Mater Sci: Mater Med 11:653

    Google Scholar 

  10. 10.

    Oktar FN, Kesenci K, Pişkin E (1999) Artif Cells Blood Substit Immobil Biotechnol 27:367

  11. 11.

    De Lange GL, De Putter C, De Wijs FLJA (2004) J Biomed Mater Res 24:829

    Google Scholar 

  12. 12.

    Ducheyne P, De Groot K (2004) J Biomed Mater Res 15:441

    Google Scholar 

  13. 13.

    Ryu SC, Lim BK, Kim SH, Chen H, Koh K, Hwang YH, Kim HS, Lee J (2008) Dent Mater, submitted

  14. 14.

    Lamy D, Pierre AC, Heimann RB (1996) J Mater Res 11:680

    Google Scholar 

  15. 15.

    Gross KA, Berndt CC (1994) J Mater Sci: Mater Med 5:1573

    Google Scholar 

  16. 16.

    Dalton JE, Cook SD, Thomas KA, Kay JF (1995) J Bone Joint Surg Am 77:97

    Google Scholar 

  17. 17.

    Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama YK (2001) J Biomed Mater Res 55:20

    Google Scholar 

  18. 18.

    Cooke FW (1992) Clin Orthop Rel Res 276:135

    Google Scholar 

  19. 19.

    Prudden JF, Migel P, Hanson P, Friedrich L, Balassa L (1970) Am J Surg 119:560

    Google Scholar 

  20. 20.

    Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) J Biomed Mater Res 51:586

    Google Scholar 

  21. 21.

    Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T (1997) Biomaterials 18:947

    Google Scholar 

  22. 22.

    Mori T, Irie Y, Nishimura SI, Tokura S, Matsuura M, Okumura M, Kadosawa T, Fujinaga T (1998) J Biomed Mater Res 43:469

    Google Scholar 

  23. 23.

    Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, Fu FH, Suh JK (2000) J Biomed Mater Res 49:534

    Google Scholar 

  24. 24.

    VandeVord PJ, Matthew HWT, DeSilva SP, Mayton LB (2002) J Biomed Mater Res 59:585

    Google Scholar 

  25. 25.

    Aoki H (1991) Science and Medical Applications of Hydroxyapatite. Takayama Press System Center Co. Inc., Tokyo

  26. 26.

    Ryu SC, Lim BK, Kim HS, Park YM (2007) Kor J Mater Res 17:544

    Google Scholar 

  27. 27.

    Joscheka S, Niesa B, Krotzc R, Göpferich A (2000) Biomaterials 21:1645

    Google Scholar 

  28. 28.

    Stoch A, Brozek A, Błazewicz S, Jastrzebski W, Stoch J, Adamczyk A, Roj IJ (2003) J Mol Struct 651–653:389

  29. 29.

    Chang MC, Tanaka J (2002) Biomaterials 23:4811

    Google Scholar 

  30. 30.

    Ashok M, Sundaram NM, Kalkura SN (2003) Materials Letters 57:2066

  31. 31.

    Toyama T, Dokushima T, Yasue T, Arai Y (1998) Inorg Mater 5:479

  32. 32.

    Qu X, Wirse’n A, Albertsson AC (2000) Polymer 41:4841

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaebeom Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, SH., Lim, BK., Sun, F. et al. Preparation of High Flexible Composite Film of Hydroxyapatite and Chitosan. Polym. Bull. 62, 111 (2009). https://doi.org/10.1007/s00289-008-1008-5

Download citation

Keywords

  • Chitosan
  • Composite Film
  • Thermo Gravimetric Analysis
  • Field Emission Scanning Electron Microscopy Image
  • Biomed Mater