Skip to main content
Log in

New Interpenetrating Polymer Networks of N-isopropylacrylamide/ N-acryloxysuccinimide: Synthesis and Characterization

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Interpenetrating polymer networks (IPNs) based on poly (N-isopropylacrylamide), PNIPAAm, and poly (N-acryloxysuccinimide), PNAS, were prepared by a sequential method; the PNIPAAm which was polymerized and crosslinked by gamma irradiation, was swelled in a solution of PNAS/polylysine, which function as crosslinking agent for this monomer and as anchoring element of vesicles.

The thermosensitivity properties (limit swelling time, lower critical solution temperature (LCST) and water retention), chemical composition (FTIR and elemental analysis), thermal properties (DSC and TGA) and morphology (SEM) were studied to characterize the IPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gandhi MV, Thomson BS (1992) Smart Materials and Structures. Chapman Hall, London

    Google Scholar 

  2. Hoffman AS (1997) Intelligent Polymers. In: Park K Editor. Controlled Drug Delivery. Washington, DC: ACS publications, p 485

  3. Kabanov VY (1998) USPEKHI KHIMII 67:861

    Google Scholar 

  4. Kabanov VY (2000) High Energy Chemistry 34:203

    Article  CAS  Google Scholar 

  5. Gil ES, Hudson S (2004) Progress in Polymer Science 29:1173

    Article  CAS  Google Scholar 

  6. Furth ME, Atala A, Van Dyke ME (in line 2007) Biomaterials

  7. Kopecek J (2007) Biomaterials (in line 2007)

  8. Heskins M, Gullet JE, James EJ (1968) Macromol Sci Chem A2:1441

    Article  Google Scholar 

  9. Schild HG (1992) Prog Polym Sci 17:163

    Article  CAS  Google Scholar 

  10. Safranj A, Yoshida M, Omichi H, Katakai R (1995) Radiat Phys Chem 46:987

    Article  CAS  Google Scholar 

  11. Barros TC, Adrona A, Winnik FM, Bohne C (1997) Langmuir 13:6089

    Article  CAS  Google Scholar 

  12. Panda A, Manohara SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Radiat Phys Chem 58:101

    Article  CAS  Google Scholar 

  13. Hoffman AS (1987) J Controlled Release 6:297

    Article  CAS  Google Scholar 

  14. Safrany A (1997) Nuclear Instrumenths and Methods in Phys Res B 131:376

    Article  CAS  Google Scholar 

  15. Okano T, Bae YH, Jacobs H, Kim SW (1990) J Contr Rel 11:255

    Article  CAS  Google Scholar 

  16. Zhou P, Deng YZ, Zeng YE (1998) Chem J of Chinese Universitie-Chinese 19:198

    CAS  Google Scholar 

  17. Freitas RFS, Cussler EL (1987) Sep Sci Tech 22:911

    Article  CAS  Google Scholar 

  18. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Prog Polym Sci (in Press)

  19. Bayhan M, Tuncel A (1998) J Appl Polym Sci 67:1127

    Article  CAS  Google Scholar 

  20. Park TG, Hoffman AS (1990) Biotechnol Bioeng 35:152

    Article  CAS  Google Scholar 

  21. Chen JP, Hoffman AS (1990) Biomaterials 11:631

    Article  CAS  Google Scholar 

  22. Robb SA, Lee BH, Lemore RM, Vernon BL (2007) Biomacromolecules 8:2294

    Article  CAS  Google Scholar 

  23. Pollak A, Blumenfeld H, Wax M, Baughn RL, Whitesides GM (1980) J Am Chem Soc 102:6324

    Article  CAS  Google Scholar 

  24. Ferruti P, Bettelli A, Feré A (1972) Polymer 13:462

    Article  CAS  Google Scholar 

  25. Yang HJ (1990) J Polym Sci, A 28, 219

  26. Percot A, Lafleur M, Zhu XX (2000) Polymer 41:7231

    Article  CAS  Google Scholar 

  27. Relogio P, Charreyre MT, Farinha JPS, Martinho JMG, Oichot C (2004) Polymer 45:8639

    Article  CAS  Google Scholar 

  28. Kim SJ, Lee KJ, Kim IY, An KH, Kim SI (2003) J App Polym Sci 90:1384

    Article  CAS  Google Scholar 

  29. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) J Appl Polym Sci 73:113

    Article  CAS  Google Scholar 

  30. Fei J, Zhang ZZ, Gu L (2002) Polymer Int 51:502

    Article  CAS  Google Scholar 

  31. Stile RA, Chung E, Burghardt WR, Healy KE (2004) J Biomater Sci Polymer Ed 15:865

    Article  CAS  Google Scholar 

  32. Sperling LH (1981) Interpenetrating Polymer Networks, and related Materials. Plenum, New York

    Google Scholar 

  33. Klempner D, Sperling LH, Utracki LA (1991) Interpenetrating Polymer Networks. Adv Chem Ser, vol 239. ACS Books, Washington, DC

    Google Scholar 

  34. Miyata T (2002) Supramolecular Design for Biological Applications. CRC Press

  35. Bhattacharya A (2000) Radiation and Industrial Polymer Prog Polym Sci 25:371

    CAS  Google Scholar 

  36. Nagaoka N, Yoshida M, Asano M, Suwa T, Kubota H, Katakai R (1997) J Polym Sci A: Polym Chem 35:3075

    Article  CAS  Google Scholar 

  37. Ortega A, Bucio E, Burillo G (2007) Polymer Bulletin 58:565

    Article  CAS  Google Scholar 

  38. Gao D-Y, Yoshida M, Asano M, Fukuzaki H, Kaetsu I (1988) Eur Polym J 24:1037

    Article  CAS  Google Scholar 

  39. Chen J-P, Chu D-H, Sun Y-M (1997) J Chem Technol Biotechnol 69:421

    Article  CAS  Google Scholar 

  40. Zhang XZ, Chu CC (2003) J Appl Polym Sci 89:1935

    Article  CAS  Google Scholar 

  41. Zhang XY, Yang YY, Chung TS, Ma KX (2001) Langmuir 17:6094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Burillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, A., Bucio, E. & Burillo, G. New Interpenetrating Polymer Networks of N-isopropylacrylamide/ N-acryloxysuccinimide: Synthesis and Characterization . Polym. Bull. 60, 515–524 (2008). https://doi.org/10.1007/s00289-007-0870-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-007-0870-x

Keywords

Navigation