Skip to main content
Log in

Non-isothermal Crystallization Kinetics of Poly (Ethylene Terephthalate)/Grafted Carbon Black Composite

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

The grafted carbon black (GCB) was prepared by in-situ grafting low molecular weight compound on the surface of carbon black (CB) using a new technique. Poly(ethylene terephthalate)/grafted carbon black (PET/GCB) and poly(ethylene terephthalate)/ carbon black (PET/CB) composites were prepared by melt blending. The non-isothermal crystallization process of virgin Poly(ethylene terephthalate)(PET), PET/CB, and PET/GCB composites were investigated by differential scanning calorimetry (DSC), and the non-isothermal crystallization kinetics was analyzed using different approaches, i.e. modified Avrami equation, Ozawa equation and the method developed by Liu. The effective energy barrier ΔE of virgin PET, PET/CB, and PET/GCB composites were calculated using the differential iso-conversional method. All of the results showed that GCB and CB acted as nucleating agents and increased the crystallization rate of PET. Compared with CB, GCB was a more effective nucleator for PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo W, Tang X, Yin G, Gao Y, Wu C (2006) J Appl Polym Sci 102: 2692.

  2. Ou C, Ho M, Lin J (2004) J Appl Polym Sci 91: 140.

  3. Cheng S, Shank RA (1993) J Appl Polym Sci 47: 2149.

    Google Scholar 

  4. Run M, Wu S, Zhang D, Wu G (2005) Polymer 46: 5308.

  5. Zhu P, Ma D (2000) Eur Polym J 36: 2471.

  6. Dilorenzo ML, Errico ME, Avella M (2002) J Mater Sci 37: 2351.

    Google Scholar 

  7. Zhu Y, Li Z, Zhang D, Tanimoto T (2006) J Polym Sci Part B 44: 1351.

    Google Scholar 

  8. Ou C, Ho M, Lin J (2003) J Polym Res 10: 127.

  9. Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Comp Sci Technol 63: 1617.

    Google Scholar 

  10. Legras R, Dekonick JM, Vanzieleghem A, Mercier JP, Nield E (1986) Polymer 27: 109.

    Google Scholar 

  11. Jawhari T, Roid A, Casado J (1995) Carbon 33: 1561.

  12. Pantea D, Darmstadt H, Kaliaguine S, Summchen L, Roy C (2001) Carbon 39: 1147.

    Google Scholar 

  13. Takada T, Nakahara M, Kumagai H, Sanada Y (1996) Carbon 34: 1087.

    Google Scholar 

  14. Huang JC (2002) Adv Polym Technol 21: 299.

    Google Scholar 

  15. Wycisk R, Pozniak R, Pasternak A (2002) J Electrostatics 56: 55.

    Google Scholar 

  16. Yu G, Zhang M, Zeng H (1998) J Appl Polym Sci 70: 559.

    Google Scholar 

  17. Bueche F (1973) J Appl Phys 44: 532.

    Google Scholar 

  18. Meyer J (1973) Polym Eng Sci 13: 462.

    Google Scholar 

  19. Meyer J (1974) Polym Eng Sci 14: 706.

    Google Scholar 

  20. Narkis M, Ram A, Flashner F (1978) Polym Eng Sci 18: 649.

    Google Scholar 

  21. Mucha M, Marszalek J, Fidrych A (2000) Polymer 41: 4137.

    Google Scholar 

  22. Mucha M, Krolikowski Z (2003) J Therm Anal Cal 74: 549.

    Google Scholar 

  23. Wiemann K, Kaminsky W, Gojny FH, Schulte K (2005) Macromol Chem Phys 206:1472.

    Google Scholar 

  24. Del Ria C, Ojeda MC, Acosta JL (2000) Eur Polym J 36: 1687.

    Google Scholar 

  25. Kim D, Seo K, Hong K, Kim S (1999) Polym Eng Sci 39: 500.

  26. Fechine GJM, Rabello MS, Souto-Maior RM (2002) Polym Degrad Stab 75: 153.

    Google Scholar 

  27. Wu C, Zhou X, Zhang X, Xu H, Li H, Li X, Zhang L (2004) Chin Pat CN1781999.

  28. Hess WM, Herd CR, Donnet J-B, Bansal RC, Wang M (1993) Carbon Black Science and Technology. 2nd ed., Marcel Dekker, New York.

  29. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43: 5483.

    Google Scholar 

  30. Cebe P, Hong S (1986) Polymer 27: 1183.

  31. Avrami M (1940) J Chem Phys 8: 212.

  32. Jeziorny A (1978) Polymer 19: 1142.

  33. Wan T, Chen L, Chua YC, Lu X (2004) J Appl Polym Sci 94: 1381.

  34. Wan W, Chen G, Wu D (2003) Polymer 44: 8119.

  35. Bian J, Ye S, Feng L (2003) J Polym Sci Part B 41: 2135.

    Google Scholar 

  36. Chae DW, Kim BC (2007) J Mater Sci 42: 1238.

  37. Jun YK, Park HS, Kim SH (2006) Polymer 47: 1379. [35]

  38. Lee CH, Saito H, Inoue T (1993) Macromolecules 26: 6566.

    Google Scholar 

  39. Ozawa T (1971) Polymer 12: 150. [36]

  40. Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 37: 568.

  41. Qiu Z, Mo Z, Yu Y, Zhang H, Sheng S, Song C (2000) J Appl Polym Sci 77: 2865.

  42. Xu W, Ge M, He P (2001) J Appl Polym Sci 82: 2281.

  43. Cebe P (1988) Polym Comp 9: 271.

  44. Kissinger HE (1956) J Res Natl Bur Stand 57: 217.

    Google Scholar 

  45. Vyazovkin S (2002) Macromol Rapid Commun 23: 771.

    Google Scholar 

  46. Friedman H (1964-1965) J Polym Sci Part C 6: 183.

    Google Scholar 

  47. Vyazovkin S (2001) J Comput Chem 22: 178.

    Google Scholar 

  48. Supaphol P, Dangseeyun N, Srimoaon P (2004) Polym Test 23: 175.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chifei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Guo, W., Zhou, Q. et al. Non-isothermal Crystallization Kinetics of Poly (Ethylene Terephthalate)/Grafted Carbon Black Composite. Polym. Bull. 59, 685–697 (2007). https://doi.org/10.1007/s00289-007-0798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-007-0798-1

Keywords

Navigation