Polymer Bulletin

, Volume 58, Issue 5–6, pp 923–931 | Cite as

Thermal properties of polynorbornene (cis- and trans-) and hydrogenated polynorbornene

  • Miguel A. Esteruelas
  • Fernando González
  • Juana Herrero
  • Patricia Lucio
  • Montserrat Oliván
  • Begoña Ruiz-Labrador


The thermal properties of trans-polynorbornene, cis-polynorbornene and hydrogenated polynorbornene were examined and its reversibility tested. Trans-polynorbornene samples, formed in various solvents, exhibit a softening range, from ambient temperature until 375 °C. However, syndiotactic cis-polynorbornene samples show a narrower melting range (between 150 and 375 °C). The fusion enthalpies of cis-polynorbornene samples are around 300-400 J/g. The temperature of decomposition is ca. 456 °C (minimum peak DSC) for trans-polynorbornene and ca. 466 °C, 10 °C higher, for cis-polynorbornene. The solvent used for the polymerization of norbornene has a negligible influence in the melting temperature range or in the decomposition temperature. The treatment with 2,6-di-tert-butyl-4-methyl-phenol during the isolation of polynorbornene leads to materials with different thermal properties. Trans-polynorbornene isolated without 2,6-di-tert-butyl-4-methyl-phenol exhibited an exothermic peak accompanied by an slight increase in weight (1-2%), while samples treated with 2,6-di-tert-butyl-4-methyl-phenol do not show these features.


Heat Flow Exothermic Peak Norbornene Fusion Enthalpy Polynorbornene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivin KJ, Mol JC (1997) Olefin Metathesis and Metathesis Polymerization. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Grubbs RH, Tumas W (1989) Science 243:907Google Scholar
  3. 3.
    Schrock RR (1993) Ring-Opening Metathesis Polymerization. In: Brunelle DJ (ed) Ring-opening polymerization: mechanism, catalysis, structure, utility. Munich, New York, pp 130-156Google Scholar
  4. 4.
    Ohm RF (1980) Chemtech 10:183Google Scholar
  5. 5.
    Marbach A (1989) Rubber world June:30Google Scholar
  6. 6.
    Galiatsatos V (1999) Poly(norbornene). In: Polymer Data Handbook. Oxford University Press, pp. 698-700Google Scholar
  7. 7.
    Dräxler A (1988) Polyalkenylenes. In: Bhowmick AK, Stephens HL (ed) Handbook of Elastomers: Marcel Dekker, Inc pp. 661-693Google Scholar
  8. 8.
    Michelotti FW, Keaveney WP (1965) J Polymer Science: Part A 3:895Google Scholar
  9. 9.
    Cataldo F (1994) Polymer International 34:49Google Scholar
  10. 10.
    Al-Samak B, Ebrahimi VA, Carvill AG, Hamilton JG, Rooney JJ (1996) Polymer International 41:85Google Scholar
  11. 11.
    Feast WJ, Harrison DB (1991) Polymer 32:558Google Scholar
  12. 12.
    Al Samak B, Amir-Ebrahimi V, Corry DG, Hamilton JG, Rigby S, Rooney JJ, Thompson JM (2000) J Mol Catal A: Chem 160:13Google Scholar
  13. 13.
    Cobo N, Esteruelas MA, González F, Herrero J, López AM, Lucio P, Oliván M (2004) J Catal 223:319Google Scholar
  14. 14.
    Brumaghim JL, Girolami GS (1999) Organometallics 18:1923Google Scholar
  15. 15.
    Denisov ET, Khudyakov IV (1987) Chem Rev 87:1313Google Scholar
  16. 16.
    Abboud W, Revillon A, Guyot A (1989) New Polymeric Mater 1:155Google Scholar
  17. 17.
    Lee L-BW, Register RA (2005) Macromolecules 38:1216Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Miguel A. Esteruelas
    • 1
  • Fernando González
    • 2
  • Juana Herrero
    • 2
  • Patricia Lucio
    • 2
  • Montserrat Oliván
    • 1
  • Begoña Ruiz-Labrador
    • 2
  1. 1.Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de AragónUniversidad de Zaragoza, CSICZaragozaSpain
  2. 2.Departamento de Ingeniería Química y Química InorgánicaUniversidad de CantabriaSantanderSpain

Personalised recommendations