Skip to main content

Advertisement

Log in

Electrochemical and optical studies of 1,4-diaminoanthraquinone for solar cell applications

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Organic microelectronic devices performances are strongly dependant on the energy level alignment of their different constituents (electrode/organic, organic/organic). The cyclic voltammograms (CV) of 1.4-diaminoanthraquinone (1,4-DAAQ) have been measured. The CV curves of 1,4-DAAQ show a one electron reversible reduction and oxidation wave. The energy levels corresponding to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the 1,4-DAAQ have been determined from the first oxidation and reduction potential respectively. The electrochemical energy gap deduced from these measures (Eg= LUMO-HOMO = 1.76 eV) agrees well with the optical energy gap (Eg∼ 1.8 eV). 1,4-DAAQ thin film has been used as electron acceptor in ITO/PEDOT:PSS/ZnPc/acceptor/LiF/Al solar cells. Perylene 3,4,9,10-tetracarboxylicdianhydre (PTCDA) has also been used as electron acceptor. The open circuit voltage value varies with the acceptor, which is in good agreement with their different HOMO values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Hung, C. H. Cheng, Material Sciences and Engineering, R39 (2002) 143.

  2. C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, in “Organic Photovoltaïcs-Concepts and Realization”, Materials Sciences 60, Springer, Berlin, 2003.

  3. J. C. Bernède, V. Jousseaume, M. A. del Valle, F. R. Díaz, “From the Organic Electroluminescent Diodes to the New Organic Photovoltaic Cells”, Current Trends in Polymer Sciences, Vol. 6 (2001) 135.

  4. E. Kymakis, E. Koudoumas, I. Franghiadakis, Sol. Ener. Mat. & Sol. Cells, 90 (2006) 1705.

    Google Scholar 

  5. M. Jamali, J. C. Bernède, C. Rabiller, J. Solid State Chem., 141 (1998) 309.

    Google Scholar 

  6. F. Brovelli, M. A. del Valle, F. R. Díaz, J. C. Bernède, Bol. Soc. Chil. Quim., 46 (2001) 319.

    Google Scholar 

  7. R. Córdova, M. A. del Valle, H. Gómez, R. Schrebler, J. Electroanal. Chem., 377 (1994) 75.

    Google Scholar 

  8. R. G. Gordon, Mater. Res. Soc. Symp. Proc. 426 (1996) 419.

  9. J. S. Kim, R. H. Friend, F. Cecialli, J. Appl. Phys., 86 (1999) 2774.

    Google Scholar 

  10. A. J. Bard, L. R. Faulkner, in “Electrochemical Methods. Fundamentals and Applications”, Wiley, New York, 1984, p 634.

  11. H. R. Kerp, E. E. van Faassen, Chem. Phys. Lett., 332 (2000) 5.

    Google Scholar 

  12. T. Maruyama, A. Hirasawa, T. Shindow, K. Akimoto, H. Kato, A. Kakizaki, J. Lum., 87-89 (2002) 782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brovelli, F., Rivas, B., Bernède, J. et al. Electrochemical and optical studies of 1,4-diaminoanthraquinone for solar cell applications. Polym. Bull. 58, 521–527 (2007). https://doi.org/10.1007/s00289-006-0686-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-006-0686-0

Keywords

Navigation