Skip to main content

Self-Assembling Hydrogels

Summary

The overview focuses on the design, synthesis, and characterization of peptide/protein-containing polymers, which self-assemble into stimuli-sensitive hydrogels. Hybrid hydrogels are composed of two classes of molecules, synthetic and biological. They self-assemble from graft copolymers, block copolymers and by association of soluble polymers and protein domains. Genetic engineering provides a powerful tool to produce biomaterials (macromolecules) with precise control of composition, length, and three-dimensional structure. Minimal changes in the composition of the coiled-coil forming protein domains in genetically produced triblock copolypeptides result in dramatic changes in the properties of the copolymers and, ultimately, the self-assembled hydrogels. The application of self-assembling hydrogels as biomaterials has been investigated and has shown a promising future.

This is a preview of subscription content, access via your institution.

References

  1. Wichterle O, Lím D (1960) Nature 185: 117

    Google Scholar 

  2. Park K, Shalaby WSW, Park H (1993) Biodegradable hydrogels for drug delivery, Technomic Publishing Co., Inc., Lancaster, PA

  3. Zhang S (2002) Biotechnol Adv 20: 321

  4. Rajapopal K, Schneider JP (2004) Curr Opin Struct Biol 14: 480

    Google Scholar 

  5. Dušek K, Patterson D (1968) J Polym Sci, Part A-2 6: 1209

  6. Tanaka T (1978) Phys Rev Lett 40: 820

    Google Scholar 

  7. Yeh P-Y, Kopečková P, Kopeček J (1995) Macromol Chem Phys 196: 2183

    Google Scholar 

  8. Cappello J (1990) Trends Biotechnol 8: 309

    Google Scholar 

  9. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Biotechnol Prog 6: 198

  10. Wang C, Stewart RJ, Kopeček J (1999) Nature 397: 417

    Google Scholar 

  11. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Science 281: 389

    Google Scholar 

  12. Xu C, Breedveld V, Kopeček J (2005) Biomacromolecules 6: 1739

    Google Scholar 

  13. Adamson JG, Zhou NE, Hodges RS (1993) Curr Opin Biotechnol 4: 428

    Google Scholar 

  14. Oas TG, Endow SA (1994) Trends Biochem Sci 19: 51

    Google Scholar 

  15. Hodges RS (1996) Biochem Cell Biol 74: 133

    Google Scholar 

  16. Lupas A (1996) Trends Biochem Sci 21: 375

    Google Scholar 

  17. Kohn WD, Mant CT, Hodges RS (1997) J Biol Chem 272: 2583

    Google Scholar 

  18. Kohn WD, Hodges RS (1998) TIBTECH 16: 379

  19. Yu YB (2002) Adv Drug Deliv Rev 54: 1113

    Google Scholar 

  20. Xu C, Joss L, Wang C, Pechar M, Kopeček J (2002) Macromol Biosci 2: 395

  21. Vandermeulen GW, Klok HA (2004) Macromol Biosci 4: 383

  22. Kopeček J, Tang A, Wang C, Stewart R (2001) Macromol Symp 174: 31

  23. Ulbrich K, Strohalm J, Kopeček J (1982) Biomaterials 3: 150

  24. Rejmanová P, Kopeček J, Pohl J, Baudyš M, Kostka V (1983) Makromol Chem 184: 2009

  25. Šubr V, Duncan R, Kopeček J (1990) J Biomater Sci Polym Ed 1: 261

    Google Scholar 

  26. West JL, Hubbell JA (1999) Macromolecules 32: 241

    Google Scholar 

  27. Park K (1988) Biomaterials 9: 435

    Google Scholar 

  28. Nagahara S, Matsuda T (1996) Polymer Gels and Networks 4: 111

    Google Scholar 

  29. De Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE (2000) Macromolecules 33: 3680

    Google Scholar 

  30. Miyata T, Jikihara A, Nakamae K, Hoffman AS (1996) Macromol Chem Phys 197: 1135

    Google Scholar 

  31. Obaidat AA, Park K (1996) Pharm Res 13: 989

  32. Obaidat AA, Park K (1997) Biomaterials 18: 801

    Google Scholar 

  33. Miyata T, Asami N, Uragami T (1999) Nature 399: 766

    Google Scholar 

  34. Chen L, Kopeček J, Stewart RJ (2000) Bioconjug Chem 11: 734

  35. Dušek K, Dušková-Smrčková M, Ilavský M, Stewart R, Kopeček J (2003) Biomacromolecules 4: 1818

    Google Scholar 

  36. Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Nat Mater 4: 298

    Google Scholar 

  37. Wang C, Kopeček J, Stewart RJ (2001) Biomacromolecules 2: 912

  38. Kopeček J (2003) Eur J Pharm Sci 20: 1

    Google Scholar 

  39. Yang J, Xu C, Wang C, Kopeček J (2005) submitted

  40. Liu J, Chen L, Li L, Hu X, Cai Y (2004) Int J Pharm 287: 13

  41. Cascone MG, Maltinti S (1999) J Mater Sci Mater Med 10: 301

    Google Scholar 

  42. Cascone MG, Maltinti S, Barbani N, Laus M (1999) J Mater Sci Mater Med 10: 431

    Google Scholar 

  43. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) J Biomater Sci Polym Ed 12: 267

    Google Scholar 

  44. Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J (2005) Biomaterials 26: 4677

    Google Scholar 

  45. Jen AC, Wake MC, Mikos AG (1996) Biotechnol Bioeng 50: 357

  46. Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Nature 408: 998

    Google Scholar 

  47. Donati I, Holtan S, Morch YA, Borgogna M, Dentini M, Skjak-Braek G (2005) Biomacromolecules 6: 1031

  48. Yonath J, Oplatka A (1968) Biopolymers 6: 1129

    Google Scholar 

  49. Oplatka A, Yonath J (1968) Biopolymers 6: 1147

    Google Scholar 

  50. Rosenblatt J, Devereux B, Wallace DG (1994) Biomaterials 15: 985

    Google Scholar 

  51. Ikada Y, Tabata Y (1998) Adv Drug Deliv Rev 31: 287

    Google Scholar 

  52. Muniruzzaman M, Tabata Y, Ikada Y (1998) J Biomater Sci Polym Ed 9: 459

    Google Scholar 

  53. Urry DW (1993) Angew Chem Int Ed Engl 32: 819

    Google Scholar 

  54. Urry DW (1997) J Phys Chem B 101: 11007

    Google Scholar 

  55. Urry DW (1999) Trends Biotechnol 17: 249

    Google Scholar 

  56. Urry DW, Hayes LC, Gowda DC, Harris CM, Harris RD (1992) Biochem Biophys Res Commun 188: 611

    Google Scholar 

  57. Urry DW, Hayes LC, Gowda DC, Peng SQ, Jing N (1995) Biochem Biophys Res Commun 210: 1031

    Google Scholar 

  58. Strzegowski LA, Martinez MB, Gowda DC, Urry DW, Tirrell DA (1994) J Am Chem Soc 116: 813

    Google Scholar 

  59. Lee J, Macosko CW, Urry DW (2001) Biomacromolecules 2: 170

  60. Apkarian RP, Wright ER, Seredyuk VA, Eustis S, Lyon LA, Conticello VP, Menger FM (2003) Microsc Microanal 9: 286

  61. Hong M, Isailovic D, McMillan RA, Conticello VP (2003) Biopolymers 70: 158

    Google Scholar 

  62. Wright ER, Conticello VP, Apkarian RP (2003) Microsc Microanal 9: 171

  63. Nagapudi K, Brinkman WT, Thomas BS, Park JO, Srinivasarao M, Wright E, Conticello VP, Chaikof EL (2005) Biomaterials 26: 4695

    Google Scholar 

  64. Ghandehari H, Cappello J (1998) Pharm Res 15: 813

  65. Dinerman AA, Cappello J, Ghandehari H, Hoag SW (2002) Biomaterials 23: 4203

    Google Scholar 

  66. Dinerman AA, Cappello J, Ghandehari H, Hoag SW (2002) J Control Release 82: 277

    Google Scholar 

  67. Megeed Z, Cappello J, Ghandehari H (2002) Adv Drug Deliv Rev 54: 1075

    Google Scholar 

  68. Megeed Z, Cappello J, Ghandehari H (2002) Pharm Res 19: 954

  69. Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H (2002) J Biomed Mater Res 62: 195

    Google Scholar 

  70. Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H (2003) Biomacromolecules 4: 602

  71. Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J, Ghandehari H (2005) Mol Pharm 2: 139

  72. Zhang S, Holmes T, Lockshin C, Rich A (1993) Proc Natl Acad Sci U S A 90: 3334

    Google Scholar 

  73. Ramachandran S, Tseng Y, Yu YB (2005) Biomacromolecules 6: 1316

    Google Scholar 

  74. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Nature 386: 259

    Google Scholar 

  75. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Nature 417: 424

    Google Scholar 

  76. Kennedy SB, deAzevedo ER, Petka WA, Russell TP, Tirrell DA, Hong M (2001) Macromolecules 34: 8675

    Google Scholar 

  77. Kopeček J (2002) Nature 417: 388

    Google Scholar 

  78. Oakley MG, Kim PS (1998) Biochemistry 37: 12603

    Google Scholar 

  79. Graddis TJ, Myszka DG, Chaiken IM (1993) Biochemistry 32: 12664

    Google Scholar 

  80. Mason TG, Weitz DA (1995) Phys Rev Lett 74: 1250

    Google Scholar 

  81. MacKintosh FC, Schmidt CF (1999) Curr Opin Colloid & Interface Sci 4: 300

    Google Scholar 

  82. Mason TG (2000) Rheol Acta 39: 371

    Google Scholar 

  83. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Phys Rev Lett 85: 888

    Google Scholar 

  84. Breedveld V, Pine DJ (2003) J Mat Sci 38: 4461

    Google Scholar 

  85. Apgar J, Tseng Y, Fedorov E, Herwig MB, Almo SC, Wirtz D (2000) Biophys J 79: 1095

  86. Tseng Y, Kole TP, Wirtz D (2002) Biophys J 83: 3162

  87. Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Phys Rev E Stat Nonlin Soft Matter Phys 64: 061506

    Google Scholar 

  88. Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Phys Rev Lett 91: 158302

    Google Scholar 

  89. Galaev IY, Mattiasson B (1999) Trends Biotechnol 17: 335

  90. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53: 321

    Google Scholar 

  91. Roy I, Gupta MN (2003) Chem Biol 10: 1161

  92. Tang M, Zhang R, Bowyer A, Eisenthal R, Hubble J (2003) Biotechnol Bioeng 82: 47

  93. Healy KE, Rezania A, Stile RA (1999) Ann N Y Acad Sci 875: 24

    Google Scholar 

  94. Lee KY, Mooney DJ (2001) Chem Rev 101: 1869

  95. Lee KY, Alsberg E, Mooney DJ (2001) J Biomed Mater Res 56: 228

    Google Scholar 

  96. Elsas FJ, Gowda DC, Urry DW (1992) J Pediatr Ophthalmol Strabismus 29: 284

    Google Scholar 

  97. Nicol A, Gowda DC, Parker TM, Urry DW (1993) J Biomed Mater Res 27: 801

    Google Scholar 

  98. Hoffman AS (1991) MRS Bulletin 16: 42

  99. Wang G, Kuroda K, Enoki T, Grosberg A, Masamune S, Oya T, Takeoka Y, Tanaka T (2000) Proc Natl Acad Sci USA 97: 9861

    Google Scholar 

  100. Osada Y, Okuzaki H, Hori H (1992) Nature 355: 242

  101. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Nature 404: 588

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Kopeček.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, C., Kopeček, J. Self-Assembling Hydrogels. Polym. Bull. 58, 53–63 (2007). https://doi.org/10.1007/s00289-006-0597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-006-0597-0

Keywords

  • Block Copolymer
  • Triblock Copolymer
  • HPMA
  • Primary Chain
  • Hybrid Hydrogel