Skip to main content

Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition

Summary

On heating, alkali chitin solutions undergo phase separation describing a characteristic “U-shaped” cloud point curve with a lower critical solution temperature (LCST) centered at ∼30 °C. The process is accompanied by gelation of the polymer-rich phase. A different strategy to induce alkali chitin phase separation/gelation is by applying vacuum to the solution at room temperature during aprox. 72 h. Once washed to neutrality, chitin gels had a degree of acetylation of ∼30–40% (i.e. they were converted into chitosan). On cooling, these gels exhibit an exothermic peak in micro-DSC and a depression in G′′ and tan δ traces, evidencing a volume phase transition centered at ∼20 °C. This transition is observed only within a narrow range of pH ∼7.3–7.6. Variation in the mechanical response as a result of cyclic stepwise changes in temperature between 50 and 0 °C at pH values from 7.3–7.6, revealed that the G’ modulus of the gels increases on heating and decreases on cooling, a behavior that persists over at least four cycles of temperature change. Only marginal changes in G’ at pH 8.0 and not at all at pH 12.0 are observed. By contrast, the variation of G′′ persists throughout the range of pH. This behavior is rationalized in terms of the existence of a fine balance between hydrophobic and hydrophilic interactions at varying temperature and pH, thus effectively controlling swelling and shrinking states of the gel network. The degree of swelling at pH 7.6 reaches a minimum at ∼22–25 °C.

This is a preview of subscription content, access via your institution.

References

  1. Bromberg LE, Ron ES (1998) Advanced Drug Del Rev 31:197

    Google Scholar 

  2. Takeuchi S, Omodaka I (1993) Makromol Chem 194:1191

  3. Park TG, Hoffman AS (1990) J Biomed. Mater Res 24:21

    Google Scholar 

  4. Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23:283

    Google Scholar 

  5. Dong LC, Hoffman AS (1991) J Control Rel, 15:141

  6. Hirokawa Y, Tanaka T (1984) J Chem Phys 81:6379

    Google Scholar 

  7. Bae YH, Okano T, Kim SW (1991) Pharm Res 8:624

  8. Bae YH, Okano T, Kim SW (1990) J Polym Sci Part B: Polym. Phys 28:923

    Google Scholar 

  9. Ilavsky M (1981) Polymer 22:1687

    Google Scholar 

  10. Dušek K (1993) In: Dušek K (Ed) Responsive Gels. Volume Phase Transition, Vol. 1. Springer, New York (Adv Polym Sci 109)

  11. Marsano E, Bianchi E, Sciutto L (2003) Polymer 44:6835

    Google Scholar 

  12. Roberts GAF, Taylor KE (1989) Makromol Chem 190:951

  13. Argüelles-Monal WM, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Polym Gels Networks 6:429

    Google Scholar 

  14. Hirano S, Yamaguchi R, Fukui N, Iwata M (1990) Carbohydr Res 201:145

  15. Draget KI, Vårum KM, Moen E, Gynnild H, Smidsrød O (1992) Biomaterials 13:635

    Google Scholar 

  16. Clayer A, Vachoud L, Viton C, Domard A (2003) Makromol Symp 200:1

  17. Moore GK, Roberts GAF (1980) Int J Biol Macromol 2:73

    Google Scholar 

  18. Desbrieres J, Martinez C, Rinaudo M (1996) Int J Biol Macromol 19:21

    Google Scholar 

  19. Rinaudo M, Pavlov G, Desbrieres J (1999) Polymer 40:7029

    Google Scholar 

  20. Goycoolea FM, Heras A, Aranaz I, Galed G, Fernández ME, Argüelles-Monal WM (2003) In: Varum KM, Domard A, Smidsrød O (Ed) Advances in Chitin Science Vol. VI. NTNU Trondheim, Norway, 169

  21. Argüelles-Monal WM, Goycoolea FM, Lizardi J, Peniche C, Higuera-Ciapara I (2000) Polym Prepr 41:703

  22. Argüelles-Monal WM, Goycoolea FM, Peniche C, Lizardi J, Higuera-Ciapara I (2003) In: Bohidar HB, Dubin P, Osada Y (Ed) Polymer Gels. Fundamentals and Applications. ACS, Washington (Series Vol. 833):102

  23. Aranaz I, Goycoolea FM, Ramos V, Heras A (2001) Muzzarelli RAA (Ed) In Chitin Enzimology. ATEC Edizioni, Ancona Italy:583

  24. Sannan T, Kurita K, Iwakura Y (1975) Die Makromol Chem 176:1191

    Google Scholar 

  25. Muzzarelli RAA, Rocchetti R, Stanic V, Weckx M (1997) Muzzarelli RAA, Peter MG (Ed) In: Chitin Handbook. ATEC Edizioni, Ancona Italy :109

  26. Rinaudo M, Milas M, Le Dung M (1993) Int J Biol Macromol 15:281

    Google Scholar 

  27. Goycoolea FM, Heras A, Aranaz I, Galed G, Fernández-Valle ME, Argüelles-Monal WM (2003) Macromol Biosci 3:612

  28. Nasimova I, Karino T, Okabe S, Nagao M, Shibayama M (2004) Macromolecules 37:8721

    Google Scholar 

  29. Nasimova I, Karino T, Okabe S, Nagao M, Shibayama M (2004) J Chem Phys 121:9708

    Google Scholar 

  30. Tanaka T, Hocker L, Benedek GB (1973) J Chem Phys 53:5151

    Google Scholar 

  31. Chronakis IS, Kasapis S (1993) Food Hydrocoll 7:459

  32. Richardson RK, Ross-Murphy SB (1981) Int J Biol Macromol 3:315

    Google Scholar 

  33. Félix L, Hernández J, Argüelles-Monal WM, Goycoolea FM (2005) Biomacromolecules 6:2408

    Google Scholar 

  34. Dušek K, Patterson D (1968) J Polym Sci Part A-2 6:1209

    Google Scholar 

  35. (a) Schild HG (1992) Progr Polym Sci 17:163; (b) Takata S, Suzuki K, Norisuye T, Shibayama M (2002) Polymer 43:3101

  36. Heras A, Aranaz I, Galed G, Fernández-Valle ME, Argüelles-Monal WM, Hernández J, Goycoolea FM (2006) Biomacromolecules. Submitted.

  37. Vázquez B, San Román J, Peniche C, Cohen ME (1997) Macromolecules 30:8840

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.M. Goycoolea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goycoolea, F., Argüelles-Monal, W., Lizardi, J. et al. Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polym. Bull. 58, 225–234 (2007). https://doi.org/10.1007/s00289-006-0590-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-006-0590-7

Keywords

  • Chitosan
  • Chitin
  • Lower Critical Solution Temperature
  • Volume Phase Transition
  • Binodal Curve