Skip to main content
Log in

Immobilization of urease on cation-exchange membranes prepared by radiation-initiated graft copolymerization of acrylic acid on polyethene thin films

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

A covalent immobilization of urease was conducted on carboxylic cation-exchange membranes (CEM) prepared by radiation-initiated graft copolymerization of acrylic acid (AA) on polyethene (PE) thin films. Six types of CEM with different grafting degree (from 26.5 to 95.2%) were used as carry. The carboxyl groups were activated by the carbodiimide method in order to carry out a covalently immobilization. The amount of bound protein and the enzyme activity were determined in each immobilized system. It was established that the urease, immobilized on CEM with 64.2% grafting degree, featured the highest relative activity – 80.32%. The amount of bound protein on this membrane type was 6.01 mg/cm2. The basic characteristics of the immobilized and the free enzymes were determined (pHopt, Topt and pHstab). It was found out that the immobilized urease had greater thermal and storage stability in comparison with the free enzyme. It was proven that CEM with a grafting degree of 64.2% would be a suitable carrier for urease immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glab S, Koncki R, Kopczewska E (1994) Talanta 41:1201

    Google Scholar 

  2. Krawczynski vel Krawczyk T, Moszczynska M (2000) Biosensors & bioelectronics 15:681

  3. Godjevargova T, Dimov A, (1995) J. Appl. Polym. Sci. 57: 487

    Google Scholar 

  4. Godjevargova T,(1996) J. Appl. Polym. Sci. 61:343

    Google Scholar 

  5. Alves da Silva M, Gil MH, Piedade AP, Redinha JS, Brett AMO, Costa JMC (1991) J. Polym. Sci. part A Polym. Chem. 29: 269

    Google Scholar 

  6. Brett AMO, Gil MH, Piedade AP (1992) Bioelectrochem. Bioenerg. 28:105

  7. Turmanova S, Trifonov A, Kalaidjiev O, Kostov G (1997) J. Membr. Sci. 127:1

    Google Scholar 

  8. Godjevargova T, Rajeshwar D, Turmanova S (2004) Macromol. Biosci. 4:950

  9. Nasef MM, Hegazy ESA (2004) Progress in Polymer Science 29(6):499

    Google Scholar 

  10. Hongfei H (1993) J. Control. Release 29(1-2):195

    Google Scholar 

  11. Hoffman AS (1981) Radiat. Phys. Chem. 18:323

    Google Scholar 

  12. Kabanov VY (1998) Russ. Chem. Rev. 67(9):783

    Google Scholar 

  13. Choi YJ, Kang MS, Kim SH, Cho J, Moon SH (2003) J. Membr. Sci. 223(1-2):201

    Google Scholar 

  14. Rosiak JM, Olejniczak J (1993) J Radiat. Phys. Chem. 42:903

    Google Scholar 

  15. Carenza M (1992) Radiat. Phys. Chem. 39:485

    Google Scholar 

  16. Choi YJ, Ahn Y, Kang MS, Jun HS, Kim IS, Moon SH. (2004) J. Chem. Technol. and Biotechnol. 79(1):79

    Google Scholar 

  17. Grasselli M, Navarro del Canizo AA, Camperi SA, Wolman FJ, Smolko EE, Cascone O (1999) ‘Radiat. Phis. Chem. 55(2): 203

    Google Scholar 

  18. YangY, Porte MC, Marmy P, El Haj AJ, Amedee J, Baquey C (2003) Nuclear Instruments and Methods in Physics Research Section B - Beam Interactions with Materials and atoms 207(2):165

  19. Martino SD, Sherif H-E, Diano N, De Maio A, Grano V, Rossi S, Bencivenga U, Mattei A, Mita DG (2003) Applied Catalysis part B Enviromental 46(3):613

    Google Scholar 

  20. Krajewska B, Leszko M, Zaborska W (1990) J. Chem. Technol. Biotechnol. 48: 337

    Google Scholar 

  21. Kusmandu B (2003) Anal. Bioanal. Chem. 376:1104

    Google Scholar 

  22. Guibault GG (1988) Methods in Enzymology In: Mosbach K (Eds) Academic Press, New York 137:14

  23. Rather BD, Shi H. (1999) Current Option in Solid State & Materials Science 4:395

  24. Godgevargova T, Gabrovska K (2003) J. Biotechnology 103:107

    Google Scholar 

  25. Godgevargova T, Dimov A (1997) J. Membr. Sci. 135:93

    Google Scholar 

  26. Küpcü S, Sara M, Sleytr UB (1991) J. Membr. Sci. 61:167

    Google Scholar 

  27. Kostov G, Turmanova S, Atanasov A (1995) Electronic and Electrical Engineering Research Studies. Electronic Materials Series In: Marshall JM (ed) Research Studies Press Ltd. Taunton Somerset 672

  28. Lowry NR, Farr A (1951) J. Biol. Chem. 193:265

    Google Scholar 

  29. Chochlova T, Yanina M, Nikitin Yu, Kurganov B (1988) Z. Anal. Chimii (Russ. ) 18:1875

  30. Kostov G, Turmanova S, Atanasov A (1995) Electronic and Electrical Engineering Research Studies. Electronic Materials Series In Marshall JM (ed) Research Studies Press Ltd. Taunton Somerset 676

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevdalina Turmanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turmanova, S., Godjevargova, T. & Vasileva, N. Immobilization of urease on cation-exchange membranes prepared by radiation-initiated graft copolymerization of acrylic acid on polyethene thin films. Polym. Bull. 55, 467–475 (2005). https://doi.org/10.1007/s00289-005-0456-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-005-0456-4

Keywords

Navigation