Skip to main content
Log in

The Effect of Macromolecular Architecture on Functional Group Accessibility: Hydrogen Bonding in Blends Containing Phenolic Photoresist Polymers

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

An investigation of phenolic functional group accessibility in linear poly(4-hydroxy styrene) (PHS) and novel, branched poly(4-hydroxystyrene) (PHS-B) is presented. The phase behavior and extent of hydrogen bonding in blends of PHS-B with complimentary Lewis base polymers are calculated from glass transition temperature (Tg) enhancements measured using differential scanning calorimetry (DSC) techniques. The fraction of PHS-B hydroxyls accessible for hydrogen bonding were compared to linear PHS chains and small molecular weight analogs to help establish a molecular architecture-functional group accessibility property relationship for use with dissolution inhibition in candidate microlithographic photoresist binders. Design approaches to macromolecular structure and architecture for tailored intermolecular interactions in phenolic systems are discussed with respect to the effects of local steric screening as well as an intriguing thermodynamic competition between inter- and intra-molecular hydrogen bonding via molecular mechanics modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu WP, Yeh CF (1999) J Appl Polym Sci, 73: 431

    Google Scholar 

  2. Pruthikul R, Coleman MM, Painter PC, Tan NB (2001) J Polym Sci, Polym Phys, 39(14): 1651

    Google Scholar 

  3. Wang, LF, Pearce EM, Kwei TK, (1991) J Polym Sci, Polym Phys, 29, 619

    Google Scholar 

  4. Orfanou K, Topouza D, Sakellariou, G, Pispas S (2003) J Polym Sci, Polym Chem 41(16):2454

    Google Scholar 

  5. Magee WS, Gibbs JH, Zimm BH (1963) Biopolymers 1:133

    Google Scholar 

  6. Blake RD, (1972) Biopolymers 11:913

    Google Scholar 

  7. Coleman MM, Graf JF, Painter PC (1991) Specific Interactions and the Miscibility of Polymer Blends: Practical guides for Predicting and Designing Miscible Polymer Mixtures. Technomic, Lancaster PA

  8. Ito H (2003) J Polym Sci, Polym Chem 41(24):3863

    Google Scholar 

  9. Ito H (2000) IBM J Res Dev 44:119

    Google Scholar 

  10. Ito H (1997) IBM J Res Dev 41:69

    Google Scholar 

  11. Ito H, Miller DC (2004) J Polym Sci, Polym Chem 42(6):1468

    Google Scholar 

  12. Ito H, Okazaki M, Miller DC (2004) J Polym Sci, Polym Chem 42(6):1478

    Google Scholar 

  13. Ito H, Okazaki M, Miller DC (2004) J Polym Sci, Polym Chem 42(6):1506

    Google Scholar 

  14. Cutler CA, Mackevich JF, Li J, O’Connell DJ, Cardinale GF, Brainard, RL (2003) SPIE 5037:40

  15. Brainard RL, Cobb J, Cutler CA (2003) J Photopolymer Sci Tech 16(3):401

    Google Scholar 

  16. Sounik J, (1996) U.S. Patent Number 5,554,719

  17. Sounik J, (1996) U.S. Patent Number 5,565,544

  18. Sounik J, Vicari R, Lu PH, Kokinda E, Ficner S, Dammel, RR (1996) SPIE Advances in Resist Technology and Processing XIII, 2724:196

  19. Ito H, IBM J Res Dev (2001) 45(5):683

    Google Scholar 

  20. Garza CM, Szmanda CR (1988) SPIE Proc 920:321

  21. Wilson, CG, McAdams CL, Yueh W, Osborn, BP (2000) Am Chem Soc Polym Prep 41(1): 946

    Google Scholar 

  22. Allinger NL (1977) J Am Chem Soc 99:8127

    Google Scholar 

  23. Zeng XM, Chan CM, Weng LT, Li L (2000) Polymer 41:8321

  24. Dai J, Goh SH, Lee SY, Siow KS Polym. J., 26, 905 (1994)

  25. Zhou X, Goh SH, Lee SY, Tan KL (1997) Appl Surf Sci 119: 60

    Google Scholar 

  26. Kato T, Frechet, JMJ (1989) Macromolecules 22(9):3818

    Google Scholar 

  27. Kato T, Kihara H, Kumar U, Uryu T, Frechet JMJ (1994) Angew Chem Int Ed Engl 33: 1644

    Google Scholar 

  28. Frechet JMJ (2002) Proc Nat Acad Sci USA 99(8):4782

    Google Scholar 

  29. Kwei TK, (1984) J Polym Sci, Polym Lett 22:307

    Google Scholar 

  30. Lin AA, Kwei TK, Reiser A, (1989) Macromolecules, 22:4112

  31. Georget DMR, Smith AC, Waldron KW (1999) Thermochimca Acta, 332:203

  32. Lee JY, Moskala EJ, Painter PC, Coleman MM (1986) Appl Spectrosc, 40(7): 991

  33. Meftahi MVD, Frechet JMJ. (1988) Polymer 29:477

  34. Scranton AB, Klier J, Peppas NA (1991) J Polym Sci, Polym Phys Ed 29(2):211

    Google Scholar 

  35. Jeong M, Mackay ME, Vestberg R, Hawker CJ (2001) Macromolecules 34(14):4927

    Google Scholar 

  36. Puttnam NA (1960) J Chem Soc 2934

  37. Puttnam NA (1960) J Chem Soc 486

  38. Puttnam NA (1960) J Chem Soc 5100

  39. Davis, MM (1968) Acid-Base Behavior in Aprotic Organic Solvents, Monograph 105, US National Bureau of Standards, Washington DC pp 25-30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Lawrence Aronson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, C., Beloskur, D., Frampton, I. et al. The Effect of Macromolecular Architecture on Functional Group Accessibility: Hydrogen Bonding in Blends Containing Phenolic Photoresist Polymers. Polym. Bull. 53, 413–424 (2005). https://doi.org/10.1007/s00289-005-0347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-005-0347-8

Keywords

Navigation