Skip to main content
Log in

Non-commutative Euclidean and Minkowski structures

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

A noncommutative *-algebra that generalizes the canonical commutation relations and that is covariant under the quantum groups SO q (3) or SO q(1, 3) is introduced. The generating elements of this algebra are hermitean and can be identified with coordinates, momenta and angular momenta. In addition a unitary scaling operator is part of the algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lusztig, Introduction to Quantum Groups. Birkhaeuser, Boston 1993, for further references

    MATH  Google Scholar 

  2. Covariant Differential Calculus on the Quantum Hyperplane. Wess J. and Zumino B., Nucl.Phys.B (ProcSuppl) 18B (1990) 302

    MATH  MathSciNet  ADS  Google Scholar 

  3. A q-deformed Quantum Mechanical Toy Model. Schwenk J. and Wess J., Phys.Lett.B 291 (1992) 273

    Article  MathSciNet  ADS  Google Scholar 

  4. Reality in the Differential Calculus on q-Euclidean Spaces. Ogievetsky O. and Zumino B., Lett.Math.Phys. 25 (1992) 121

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. SO q(3) Quantum Mechanics. Weich w., Lecture at the XXX Karpacz Winter School (1994) 561, in: Lukierski J. (ed.) Quantum Groups. Formalism and applications, Warszawa 1995. The Hilbert space representations for SOq(3)-symmetric quantum mechanics. Weich W., hep-th/9404029 (1994), preprint

  6. Hilbertspace Representation of an Algebra of Observables for qdeformed Relativistic Quantum Mechanics. Zippold W., Z.Phys.C 67 (1995) 681. Drehimpuls und Hilbert-Raum, Darstellung der Quanten-Lorentz-Algebra. Zippold W., Diplomarbeit, LMU Muenchen, Lehrstuhl Prof. J. Wess, Oktober 1993. SO q(4) Quantum Mechanics. Ocampo H., Z.Phys.C 70 (1996) 525

  7. A q-deformed Lorentz Algebra. Schmidke W.B., Wess J. and Zumino B., Z.Phys.C 52 (1991) 471

    MathSciNet  ADS  Google Scholar 

  8. SU q[2] Covariant R-matrices for Reducible Representations. Lorek A., Schmidke W.B. and Wess J., Lett.Math.Physics 31 (1994) 279

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. q-deformed Poincaré Algebra. Ogievetsky O., Schmidke W.B., Wess J. and Zumino B., Comm.Math.Phys 150 (1992) 495

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. q-deformierte Quantenmechanik und Induzierte Wechselwirkungen. Lorek A., Thesis, LMU Muenchen, Fakultaet fuer Physik, Mai 1995

  11. Representations of a q-deformed Heisenberg Algebra. Hebecker A., Schreckenberg S., Schwenk J., Weich W. and Wess J., Z.Phys.C 64 (1994) 355

    MathSciNet  ADS  Google Scholar 

  12. Six generator q-deformed Lorentz Algebra. Ogievetsky O., Schmidke W.B., Wess J. and Zumino B., Lett.Math.Phys. 23 (1991) 233

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorek, A., Weich, W. & Wess, J. Non-commutative Euclidean and Minkowski structures. Z Phys C - Particles and Fields 76, 375–386 (1997). https://doi.org/10.1007/s002880050562

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002880050562

Keywords

Navigation