Skip to main content
Log in

General description of new physics in t, b and boson interactions and its unitarity constraints

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We list all possible dim = 6 CP conserving and SU(3) × SU(2) × U(1) gauge invariant interactions, which could be generated in case no new particles would be reachable in the future Colliders, and the only observable New Physics would be in the form of new interactions affecting the scalar sector and the quarks of the third family. These interactions are described by operators involving the standard model scalar field, the quarks of the third family and the gauge bosons. Subsequently, we identify those operators which do not contribute to LEP1 (and lower energy) observables at tree level and are not purely gluonic. Since present measurements do not strongly constrain the couplings of these operators, we derive here the unitarity bounds on them. Finally, in order to get a feeling on the possible physical meaning of the appearance of any of these operators, we identify the operators generated in a class of renormalizable dynamical models which at the TeV scale, are fully described by the SU(3) × SU(2) × U(1) gauge group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Veltman, Nucl. Phys. B123 (1977) 89; M.E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65 (1990) 964; G. Altarelli and R. Barbieri, Phys. Lett. B253 (1991) 161

    Article  ADS  Google Scholar 

  2. A. Blondel, ICHEP96 (plenary talk), Warsaw July 1996. W. Hollik, KA-TP-19-1996, hep-ph/9608325

  3. G.J. Gounaris and F.M. Renard, Z. Phys. C59 (1993) 133; J.D. Wells, C. Kolda and G.L. Kane Phys. Lett. B338 (1994) 219; C.T. Hill and X. Zhang, Phys. Rev. D51 (1995) 3563; T.G. Rizzo, Phys. Rev. D51 (1995) 3811; H. Georgi, L. Kaplan, D. Morin and A. Schenk, Phys. Rev. D51 (1995) 3888; Z. Zhang and B.-L. Young, Phys. Rev. D51 (1995) 6584; E. Ma and D. Eng, Phys. Rev. D53 (1996) 255

    ADS  Google Scholar 

  4. M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379; M.S.Chanowitz, Ann.Rev.Nucl.Part.Sci.38(1988)323

    Article  ADS  Google Scholar 

  5. G.J. Gounaris, J. Layssac and F.M. Renard, Z. Phys. C69 (1996) 505. G.J. Gounaris and F.M. Renard, Z. Phys. C69 (1996) 513

    Google Scholar 

  6. T. Appelquist and G-H. Wu Phys. Rev. D48 (1993) 3235

    ADS  Google Scholar 

  7. H.-J. He, Y.-P. Kuang and C.-P. Yuan, DESY 95-252, hep-ph/9604309

  8. W. Buchmüller and D. Wyler, Nucl. Phys. B268 (1986) 621; C.J.C. Burgess and H.J. Schnitzer, Nucl. Phys. B228 (1983) 454; C.N. Leung, S.T. Love and S. Rao Z. Phys. C31 (1986) 433. C. Arzt, M.B. Einhorn and J. Wudka, Nucl. Phys. B433 (1995) 41

    Article  ADS  Google Scholar 

  9. K. Hagiwara et al, Phys. Lett. B283 (1992) 353; Phys. Rev. D48 (1993) 2182

    Article  ADS  Google Scholar 

  10. G. Gounaris, F.M. Renard and C. Verzegnassi, Phys. Rev. D52 (1995) 451

    ADS  Google Scholar 

  11. D. Atwood, A. Kagan and T.G. Rizzo Phys. Rev. D52 (6264) 1994 X. Zhang and B.-L. Young Phys. Rev. D51 (1995) 6564. T. Han, R.D. Peccei and X. Zhang, Nucl. Phys. B454 (1995) 527. T. G. Rizzo, Phys. Rev. D53 (1996) 6218. P. Haberl, O. Nachtman and A. Wilch, Phys. Rev. D53 (1996) 4875

    Google Scholar 

  12. M. Hosch, K. Whisnant and B.-L. Young, AMES-HET 96-04

  13. H. Georgi, Nucl. Phys. B361 (1991) 339

    Article  ADS  Google Scholar 

  14. G.J. Gounaris, J. Layssac and F.M. Renard, Phys. Lett. B332 (1994) 146; G.J. Gounaris, J. Layssac, J.E. Paschalis and F.M. Renard, Z. Phys. C66 (1995) 619

    Article  ADS  Google Scholar 

  15. G.J. Gounaris, F.M. Renard and G. Tsirigoti, Phys. Lett. B350 (1995) 212

    Article  ADS  Google Scholar 

  16. G. Gounaris, F.M. Renard and N.D. Vlachos Nucl.Phys. B459(1996)51

    Article  ADS  Google Scholar 

  17. G. Altarelli, R. Barbieri and F. Caravaglios Phys. Lett. B314 (1993) 357

    Article  ADS  Google Scholar 

  18. A. De Rújula et.al., Nucl. Phys. B384 (1992) 3

    Article  ADS  Google Scholar 

  19. K. Whisnant, B.-L. Young and X. Zhang, Phys. Rev. D52 (1995) 3115. Bl-L. Young, Talk at Int. Symp. on Heavy Flavour and Electroeak Theory, August 1995, Beijing, China, hep-ph/9511282

    ADS  Google Scholar 

  20. G.J. Gounaris, F.M. Renard and G. Tsirigoti, Phys. Lett. B338 (1994) 51

    Article  ADS  Google Scholar 

  21. C. Arzt, M.B. Einhorn and J. Wudka, Nucl. Phys. B433 (1995) 41

    Article  ADS  Google Scholar 

  22. G.J. Gounaris, D.T. Papadamou and F.M. Renard, PM/96-31, THESTP 96/10, hep-ph/9611224

  23. M. Bilenky, J.L. Kneur, F.M. Renard and D. Schildknecht, Nucl. Phys. B409 (1993) 22 and B419 (1994) 240

    Article  ADS  Google Scholar 

  24. G.J. Gounaris, M. Kuroda and F.M. Renard, Phys. Rev. D54 (1996) 6861

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the EC contract CHRX-CT94-0579

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounaris, G.J., Papadamou, D.T. & Renard, F.M. General description of new physics in t, b and boson interactions and its unitarity constraints. Z Phys C - Particles and Fields 76, 333–341 (1997). https://doi.org/10.1007/s002880050558

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002880050558

Keywords

Navigation