Skip to main content
Log in

Gaussian effective potential for the U(1) Higgs model

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

In order to investigate the Higgs mechanism nonperturbatively, we compute the Gaussian effective potential of the U(1) Higgs model (“scalar electrodynamics”). We show that the same simple result is obtained in three different formalisms. A general covariant gauge is used, with Landau gauge proving to be optimal. The renormalization generalizes the “autonomous” renormalization for λϕ4 theory and requires a particular relationship between the bare gauge coupling e B and the bare scalar self-coupling λ B. When both couplings are small, then λ is proportional to e4 and the scalar/vector mass-squared ratio is of order e2, as in the classic 1-loop analysis of Coleman and Weinberg. However, as λ increases, e reaches a maximum value and then decreases, and in this “nonperturbative” regime the Higgs scalar can be much heavier than the vector boson. We compare our results to the autonomously renormalized 1-loop effective potential, finding close agreement in the physical predictions. The main phenomenological implication is a Higgs mass of about 2 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs: Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13, 508 (1964); F. Englert and R. Brout, ibid, 321; G. S. Guralnik, C. R. Hagen, T.W.B. Kibble,: ibid, 585; T.W.B. Kibble: Phys. Rev. 155, 1554 (1967)

    Article  Google Scholar 

  2. J. Goldstone, A. Salam, S. Weinberg: Phys. Rev. 127, 965 (1962); G. Jona-Lasinio, Nuovo Cimento 34, 1790 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Coleman, E. Weinberg: Phys. Rev. D 7, 1888 (1973)

    Article  Google Scholar 

  4. S. Weinberg: Phys. Rev. D7, 2887 (1973); R. Jackiw, Phys. Rev. D9, 1686 (1974)

    Google Scholar 

  5. M. Aizenman: Phys. Rev. Lett. 47,1 (1981); J. Fröhlich: Nucl. Phys. B200, 281 (1982); A. Sokal: Ann. Inst. H. Poincaré 37, 317 (1982); R. Fernández, J. Fröhlich, A.D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992)

    Article  MathSciNet  Google Scholar 

  6. K.G. Wilson, J. Kogut: Phys. Rep. C12 75 (1974); G.A. Baker and J.M. Kincaid: Phys. Rev. Lett. 42 1431 (1979); B. Freedman, P. Smolensky, D. Weingarten: Phys. Lett. B113 481 (1982); D.J.E. Callaway, R. Petronzio: Nucl. Phys. B240, 577 (1984); I.A. Fox, I.G. Halliday: Phys. Lett. B159, 148 (1985); C.B. Lang: Nucl. Phys. B265, 630 (1986); M. Lüscher, P. Weisz: Nucl. Phys. B290, 25 (1987); D.J.E. Callaway: Phys. Rep. 167, 241 (1988)

    Article  Google Scholar 

  7. M.G. do Amaral, R.C. Shellard: Phys. Lett. B171 285 (1986); M. Lüscher, P. Weisz: Nucl. Phys. B295 65 (1988)

    Article  Google Scholar 

  8. T. Barnes, G.I. Ghandour: Phys Rev. D22, 924 (1980); S.J. Chang, ibid. 12, 1071 (1975); G. Rosen: Phys. Rev. 173, 1632 (1968); L.I. Schiff, ibid. 130, 458 (1963); J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10, 2428 (1974). A more complete list can be found in Refs. [9, 10]

    Google Scholar 

  9. P.M. Stevenson: Phys. Rev. D30, 1712 (1984)

    Google Scholar 

  10. P.M. Stevenson: Phys. Rev. D32, 1389 (1985)

    Google Scholar 

  11. P.M. Stevenson: B. Allès, R. Tarrach: Phys. Rev. D35, 2407 (1987)

    Google Scholar 

  12. The existence of two distinct renormalizations can be understood in terms of distinct limits as the spacetime dimension d tends to 4 from above or from below: see P.M. Stevenson: Z. Phys. C 35, 467 (1987)

    Article  Google Scholar 

  13. P.M. Stevenson: Z. Phys. C 24, 87 (1984)

    Article  MathSciNet  Google Scholar 

  14. S. Coleman, R. Jackiw, H.D. Politzer: Phys. Rev. 10, 2491 (1974); L.F. Abbott, J.S. Kang, H.J. Schnitzer: ibid 13, 2212 (1976); W.A. Bardeen, M. Moshe: Phys. Rev. D28, 1372 (1983)

    Google Scholar 

  15. M. Consoli, A. Ciancitto: Nucl. Phys. B254, 653 (1985)

    Article  Google Scholar 

  16. P.M. Stevenson and R. Tarrach: Phys. Lett. B176, 436 (1986)

    Article  MathSciNet  Google Scholar 

  17. V. Branchina, P. Castorina, M. Consoli, D. Zappalà: Phys. Rev. D42, 3587 (1990); P. Castorina, M. Consoli: Phys. Lett. B235, 302 (1990)

    Google Scholar 

  18. U. Ritschel, I. Stancu, P. M. Stevenson: Z. Phys. C 54 627 (1992)

    Article  Google Scholar 

  19. V. Branchina, P. Castorina, M. Consoli, D. Zappalà: Phys. Lett. B 274, 404 (1992); Proceedings of the Moriond meeting, March 1991; V. Branchina, N. M. Stivala, D. Zappalà, Diagrammatic expansion for the effective potential and renormalization of massless λϕ4 theory, INFN, Catania preprint; M. Consoli, in “Gauge Theories Past and Future — in Commemoration of the 60th birthday of M. Veltman”, R. Akhoury, B. de Wit, P. van Nieuwenhuizen, H. Veltman Eds., World Scientific 1992, p. 81; M. Consoli, Phys. Lett. B 305, 78 (1993); M. Consoli, Is there any upper limit on the Higgs mass?, INFN Catania preprint, July 1992

    Article  MathSciNet  Google Scholar 

  20. V. Branchina, M. Consoli, N.M. Stivala: Z. Phys. C 57, 251 (1993)

    Article  Google Scholar 

  21. R. Ibañez-Meier, P. M. Stevenson: Phys. Lett. B 297, 144 (1992)

    Article  Google Scholar 

  22. M. Consoli, P.M. Stevenson: Resolution of the λΦ4 puzzle and a 2 TeV Higgs boson, Rice preprint DE-FG05-92ER40717-5 (1993) (hep-ph 9303256); Z. Phys. C63 427 (1994). For a brief outline, see “Triviality” Made Easy: the real $(«mbda Phi 4)_4$ story, Rice preprint DE-FG05-92ER40717-14 (hep-ph 9407334). See also U. Ritschel, Phys. Lett. B318, 617 (1993)

  23. A. Okopińska: Phys. Rev. D 38 2498 (1988); S. Paban, R. Tarrach, Phys. Lett. B213 48 (1988); J. Soto: Nucl. Phys. B 316 141 (1989); B. Rosenstein, A. Kovner: Phys. Rev. D40 504 (1989); R. Ibañez-Meier: Phys. Lett. B295 89 (1992)

    Article  MathSciNet  Google Scholar 

  24. This picture also explains why the finite-temperature effects are just those due to free bosons [see G.A. Hajj, P.M. Stevenson: Phys. Rev. D 37 413 (1988)]. These free-boson thermal fluctuations nevertheless have a non-trivial effect on the effective potential, and lead to a first-order, symmetry-restoring phase transition at a finite critical temperature. This provides a physical manifestation of the not-entirely-trivial nature of $(«mbda ☎i 4)_4$ theory

    Article  Google Scholar 

  25. A. Agodi, G. Andronico, M. Consoli: Z. Phys. C66, 439 (1995); P. Cea, L. Cosmai (unpublished); P. Cea, L. Cosmai, M. Consoli, R. Fiore: preprint BARI-TH 204/95, CS-Th 10/9, May 1995 (hepth/9505948)

    Google Scholar 

  26. I. Stancu, P.M. Stevenson: Phys. Rev. D42, 2710 (1990); I. Stancu, ibid 43, 1283 (1991)

    Google Scholar 

  27. A. Okopińska: Phys. Rev D35, 1835 (1987)

    Google Scholar 

  28. A. Duncan, M. Moshe: Phys. Lett. B 215, 352 (1988); H. F. Jones, Nucl. Phys. B (Proc. Suppl.) 16, 592 (1990)

    Article  Google Scholar 

  29. S.K. Gandhi, H.F. Jones, M.B. Pinto: Nucl. Phys. B359, 429 (1991)

    Article  Google Scholar 

  30. R. Ibañez-Meier, L. Polley, U. Ritschel: Phys. Lett. B279, 106 (1992); R. Ibañez-Meier: Phys. Lett. B 295, 89 (1992)

    Article  Google Scholar 

  31. J. Ambjørn, R. J. Hughes: Nucl. Phys. B 217, 336 (1983)

    Article  Google Scholar 

  32. The factor of 4 in the λB term is included so that the O(2) λϕ4 potential in Eq. (3.5) has the exactly the same form as in Ref. [11]. Many authors use λ/4! in place of our λ

  33. Y. Brihaye, M. Consoli: Phys. Lett. 157B, 48 (1985); Nuovo Cimento A94,1 (1986)

    Article  Google Scholar 

  34. N. Nakanishi: Prog. Theor. Phys. 35, 1111 (1966); B. Lautrup, Kg. Dansk. Vid. Selsk. Mat.-fys. Medd. 35, 1 (1967)

    Article  Google Scholar 

  35. R.P. Feynman: Phys. Rev. 97, 660 (1955); Statistical Mechanics, Benjamin, New York, 1972

    Article  MATH  Google Scholar 

  36. V. Dmitrašinović J.R. Shepard, J.A. McNeil, University of Colorado preprint, 1994 (hep-th 9406151)

  37. B. Allès, R. Tarrach: J. Phys. A19, 2087 (1986)

    Google Scholar 

  38. P. Cea: Phys. Lett. B165, 197 (1985)

    Article  Google Scholar 

  39. B. Allès, R. Muñoz-Tàpia, R. Tarrach: Ann. Phys. 204, 432 (1990); R. Muñoz-Tàpia, R. Tarrach, ibid, 468

    Article  MATH  Google Scholar 

  40. A. Kovner, B. Rosenstein: Phys. Rev. D40, 515 (1989)

    Google Scholar 

  41. J. S. Kang: Phys. Rev. D14, 1587 (1976)

    Google Scholar 

  42. J. S. Schwinger: Phys. Rev. 74, 1439 (1948), especially Sec. 2; J. M. Rauch, F. Rohrlich: The theory of photons and electrons, Springer-Verlag (New York, 1955)

    Article  MATH  MathSciNet  Google Scholar 

  43. This parametrization is only appropriate if an SSB minimum exists, which need not be the case if ${⤪ m} 2_0$ is sufficiently large and positive

  44. L. Dolan, R. Jackiw: Phys. Rev. D9 2904 (1974)

    Google Scholar 

  45. The GEP results for the O(N) case can be obtained from Ref. [11], supplemented by a quick calculation of the proper z0 factor, as explained in Sect. 7.4. For zero bare mass, this gives ${⤪ z}_0=(≪ 2/2ða _0) (1+4ða _0) /(1-4ða _0)$, where η/0 in the O(N) case is $1/(4(1+cdot sqrt {N+3}))$. The Higgs mass is again given by the form (8.3). If the bare mass is non-zero, then the result is affected only by an ${⤪ m} 2/Phi 2_v$ correction to z0

  46. U. Ritschel: Z. Phys. C63, 345 (1994)

    Google Scholar 

  47. The puzzles found by Stancu in the second paper of Ref. [26] are resolved by the wavefunction-renormalization condition of Ref. [19]. The mass relation is only slightly modified from the Gaussian-approximation result. (J. F. Reed, private communication)

  48. Actually, for non-zero gauge coupling the theory is presumably no longer “trivial,” so this “exact” formula should only be truly exact at the two ends; i.e., when y → 0

  49. J. Cornwall, D. Levin, G. Tiktopoulos: Phys. Rev. D10 1145 (1974); C. Vayonakis: Lett. Nuovo Cimento 17 383 (1976); B. Lee, C. Quigg, H. Thacker: Phys. Rev. D16 1519 (1977); M. Chanowitz, M. K. Gaillard: Nucl. Phys. B261 379 (1985); Y. Yao, C. Yuan: Phys. Rev. D38 2237 (1988); H. Veltman: Phys. Rev. D41 2294 (1990); J. Bagger, C. Schmidt: Phys. Rev. D41 264 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibañez-Meier, R., Stancu, I. & Stevenson, P.M. Gaussian effective potential for the U(1) Higgs model. Z Phys C - Particles and Fields 70, 307–319 (1996). https://doi.org/10.1007/s002880050108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002880050108

Keywords

Navigation