Erfahrungen beim Aufbau von großen Clustern aus Einplatinencomputern für Forschung und Lehre

References

  1. 1.

    Abrahamsson P, Helmer S, Phaphoom N, Nicolodi L, Preda N, Miori L, Bugoloni S (2013) Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), 2013, Vol. 2, pp 170–175

  2. 2.

    Bauke H, Mertens S (2006) Cluster Computing. Springer, Berlin

    Google Scholar 

  3. 3.

    Baun C (2016) Mobile Clusters of Single Board Computers: An Option for providing Resources to Student Projects and Researchers. SpringerPlus 2016 5:360, http://springerplus.springeropen.com/articles/10.1186/s40064-016-1981-3, last access: 4.12.2017

    Google Scholar 

  4. 4.

    Baun C (2016) Parallel Image computation in Clusters with task-distributor. SpringerPlus 2016, 5:632, http://springerplus.springeropen.com/articles/10.1186/s40064-016-2254-x, last access: 4.12.2017

    Google Scholar 

  5. 5.

    Baun C (2017) Lessons learned from implementing a scalable PaaS service by using single board computers. Int J Cloud Comput Serv Archit 7(2):1–11, http://aircconline.com/ijccsa/V7N2/7217ijccsa01.pdf, last access: 4.12.2017

    Google Scholar 

  6. 6.

    Baun C, Cocos HN, Spanou RM (2017) Performance aspects of object-based storage services on single board computers. Open J Cloud Comput 4(1):1–16, https://www.ronpub.com/OJCC_2017v4i1n01_Baun.pdf, last access: 4.12.2017

    Article  Google Scholar 

  7. 7.

    Cloutier MF, Paradis C, Weaver VM (2014) Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance. In: Proceedings of the 1st International Workshop on Hardware-Software Co-Design for High Performance Computing 2014, IEEE Press, pp 1–8

  8. 8.

    Cox S, Cox J, Boardman R, Johnston S, Scott M, O’Brien N (2014) Iridis-Pi: A low-cost, compact demonstration cluster. Cluster Comput 17(2):349–358

    Article  Google Scholar 

  9. 9.

    Dinan J, Balaji P, Lusk E, Sadayappan P, Thakur R (2010) Hybrid Parallel Programming with MPI and Unified Parallel C. In: Proceedings of the 7th ACM International Conference on Computing Frontiers 2010, pp 177–186

  10. 10.

    http://www.mcs.anl.gov/research/projects/mpi/, last access: 4.12.2017

  11. 11.

    http://www.netlib.org/benchmark/hpl/, last access: 4.12.2017

  12. 12.

    http://www.raspbian.org/, last access: 4.12.2017

  13. 13.

    https://cloud.google.com/appengine/, last access: 4.12.2017

  14. 14.

    https://www.raspberrypi.org/products/raspberry-pi-3-model-b/, last access: 4.12.2017

  15. 15.

    https://wiki.ubuntu.com/ARM/RaspberryPi, last access: 4.12.2017

  16. 16.

    Kiepert J (2013) Creating a Raspberry Pi-Based Beowulf Cluster, http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf, last access: 4.12.2017

  17. 17.

    Krintz C (2013) The AppScale Cloud Platform: Enabling portable, scalable Web Application Deployment. IEEE Internet Comput 17(2):72–75

    Article  Google Scholar 

  18. 18.

    Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S (2008) Amazon S3 for Science Grids: A Viable Solution? In: Proceedings of the 2008 International Workshop on Data-Aware Distributed Computing, ACM, pp 55–64

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Baun.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baun, C., Cocos, H. & Spanou, R. Erfahrungen beim Aufbau von großen Clustern aus Einplatinencomputern für Forschung und Lehre. Informatik Spektrum 41, 189–199 (2018). https://doi.org/10.1007/s00287-017-1083-9

Download citation