Erfahrungen beim Aufbau von großen Clustern aus Einplatinencomputern für Forschung und Lehre

  • Christian Baun
  • Henry-Norbert Cocos
  • Rosa-Maria Spanou
Open Access
HAUPTBEITRAG AUFBAU VON CLUSTERN AUS EINPLATINENCOMPUTERN
  • 152 Downloads

References

  1. 1.
    Abrahamsson P, Helmer S, Phaphoom N, Nicolodi L, Preda N, Miori L, Bugoloni S (2013) Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), 2013, Vol. 2, pp 170–175Google Scholar
  2. 2.
    Bauke H, Mertens S (2006) Cluster Computing. Springer, BerlinMATHGoogle Scholar
  3. 3.
    Baun C (2016) Mobile Clusters of Single Board Computers: An Option for providing Resources to Student Projects and Researchers. SpringerPlus 2016 5:360, http://springerplus.springeropen.com/articles/10.1186/s40064-016-1981-3, last access: 4.12.2017Google Scholar
  4. 4.
    Baun C (2016) Parallel Image computation in Clusters with task-distributor. SpringerPlus 2016, 5:632, http://springerplus.springeropen.com/articles/10.1186/s40064-016-2254-x, last access: 4.12.2017Google Scholar
  5. 5.
    Baun C (2017) Lessons learned from implementing a scalable PaaS service by using single board computers. Int J Cloud Comput Serv Archit 7(2):1–11, http://aircconline.com/ijccsa/V7N2/7217ijccsa01.pdf, last access: 4.12.2017Google Scholar
  6. 6.
    Baun C, Cocos HN, Spanou RM (2017) Performance aspects of object-based storage services on single board computers. Open J Cloud Comput 4(1):1–16, https://www.ronpub.com/OJCC_2017v4i1n01_Baun.pdf, last access: 4.12.2017CrossRefGoogle Scholar
  7. 7.
    Cloutier MF, Paradis C, Weaver VM (2014) Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance. In: Proceedings of the 1st International Workshop on Hardware-Software Co-Design for High Performance Computing 2014, IEEE Press, pp 1–8Google Scholar
  8. 8.
    Cox S, Cox J, Boardman R, Johnston S, Scott M, O’Brien N (2014) Iridis-Pi: A low-cost, compact demonstration cluster. Cluster Comput 17(2):349–358CrossRefGoogle Scholar
  9. 9.
    Dinan J, Balaji P, Lusk E, Sadayappan P, Thakur R (2010) Hybrid Parallel Programming with MPI and Unified Parallel C. In: Proceedings of the 7th ACM International Conference on Computing Frontiers 2010, pp 177–186Google Scholar
  10. 10.
    http://www.mcs.anl.gov/research/projects/mpi/, last access: 4.12.2017Google Scholar
  11. 11.
    http://www.netlib.org/benchmark/hpl/, last access: 4.12.2017Google Scholar
  12. 12.
    http://www.raspbian.org/, last access: 4.12.2017Google Scholar
  13. 13.
    https://cloud.google.com/appengine/, last access: 4.12.2017Google Scholar
  14. 14.
    https://www.raspberrypi.org/products/raspberry-pi-3-model-b/, last access: 4.12.2017Google Scholar
  15. 15.
    https://wiki.ubuntu.com/ARM/RaspberryPi, last access: 4.12.2017Google Scholar
  16. 16.
    Kiepert J (2013) Creating a Raspberry Pi-Based Beowulf Cluster, http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf, last access: 4.12.2017Google Scholar
  17. 17.
    Krintz C (2013) The AppScale Cloud Platform: Enabling portable, scalable Web Application Deployment. IEEE Internet Comput 17(2):72–75CrossRefGoogle Scholar
  18. 18.
    Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S (2008) Amazon S3 for Science Grids: A Viable Solution? In: Proceedings of the 2008 International Workshop on Data-Aware Distributed Computing, ACM, pp 55–64Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Christian Baun
    • 1
  • Henry-Norbert Cocos
    • 1
  • Rosa-Maria Spanou
    • 1
  1. 1.Frankfurt University of Applied SciencesFrankfurt am MainDeutschland

Personalised recommendations