Skip to main content
Log in

3D-Druck für blinde Menschen

Vom statischen Druck zu interaktiven Objekten

  • HAUPTBEITRAG
  • 3D-DRUCK FÜR BLINDE MENSCHEN
  • Published:
Informatik-Spektrum Aims and scope

Zusammenfassung

Neben herkömmlichen taktilen Drucktechniken für blinde Menschen findet auch der 3D-Druck zunehmend Verbreitung. Während anfängliche Ansätze beabsichtigten, mit dieser alternativen Drucktechnologie qualitativ ähnliche Druckresultate zu erzielen, nutzen neuere Ansätze deren Potenzial, um interaktive Drucke zu erstellen. Ausgehend von dieser Entwicklung verschafft dieser Artikel einen Überblick über wesentliche Ansätze für die Erstellung von vielfältigen taktilen Materialen mittels 3D-Druckern. Er zeigt dabei insbesondere den Wandel von statischen zu interaktiven Ansätzen auf. Dabei muss bei Letzteren eine Kopplung zwischen den taktilen 3D-Drucken und elektronischen Entitäten erfolgen, welche durch unterschiedliche Sensorik umgesetzt werden kann. Zukünftige Entwicklungen könnten es erlauben, die Interaktion des Benutzers mit der kompletten Oberfläche von 3D-Drucken sensorisch zu erfassen und somit komplexe neue Interaktionsmöglichkeiten zu erschließen, welche blinden wie auch sehenden Menschen hilfreich sein können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brock AM, Truillet P, Oriola B, Picard D, Jouffrais C (2015) Interactivity improves usability of geographic maps for visually impaired people. Hum Comput Interact 30(2):156–194

    Article  Google Scholar 

  2. Brown C, Hurst A (2012) VizTouch: automatically generated tactile visualizations of coordinate spaces. Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, pp 131–138

  3. Edman PK (1992) Tactile Graphics. AFB Press, New York

    Google Scholar 

  4. Götzelmann T (2016) CapMaps: Capacitive Sensing 3D Printed Audio-Tactile Maps. In: Miesenberger K, Bühler C, Penaz P (Hrsg) Proceedings of the 15th international conference on Computers helping people with special needs, Bd. 9759. Springer International Publishing, Cham, pp 146–152

    Google Scholar 

  5. Götzelmann T (2016) LucentMaps: 3D Printed Audiovisual Tactile Maps for Blind and Visually Impaired People. Proceedings of 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’16), pp 81–90

  6. Götzelmann T, Althaus C (2016) TouchSurfaceModels: Capacitive Sensing Objects through 3D Printers. Proceedings of 9th International Conference on PErvasive Technologies Related to Assistive Environments (PETRAE’16), p 22:1–22:8

  7. Götzelmann T, Eichler L (2016) BlindWeb Maps – An Interactive Web Service for the Selection and Generation of Personalized Audio-Tactile Maps. In: Miesenberger K, Bühler C, Penaz P (Hrsg) Proceedings of the 15th international conference on Computers helping people with special needs, Bd. 9759. Springer International Publishing, Cham, pp 139–145

    Google Scholar 

  8. Götzelmann T, Pavkovic A (2014) Towards automatically generated tactile detail maps by 3D printers for blind persons. Proceedings of the 14th International Conference on Computers Helping People with Special Needs (ICCHP’14), pp 1–7

  9. Götzelmann T, Schneider D (2016) CapCodes: Capacitive 3D Printable Identification and On-screen Tracking for Tangible Interaction. Proceedings of 9th Nordic Conference on Human-Computer Interaction (NordiCHI’16), Article No. 32

  10. Götzelmann T, Winkler K (2015) SmartTactMaps: A Smartphone-Based Approach to Support Blind Persons in Exploring Tactile Maps. Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRAE’15), pp 2:1–2:8

  11. Gual J, Puyuelo M, Lloveras J (2015) The effect of volumetric (3D) tactile symbols within inclusive tactile maps. Appl Ergon 48:1–10

    Article  Google Scholar 

  12. Hars A (2016) Patent: Taktiles Schreibgerät, DE 10 2014 011 326 B4, 25-Mai-2016

  13. Konstruktion von Modellen für den 3D-Druck und Modelldruck am Medienberatungszentrum Ilvesheim. Verfügbar unter: http://www.isar-projekt.de/literatur/konstruktion-von-modellen-fuer-den-3d-druck-und-modelldruck-am-medienberatungszentrum-ilvesheim-6346.html, letzter Zugriff: 6.3.2017

  14. Mikulowski D, Brzostek-Pawlowska J (2014) Problems encountered in technical education of the blind, and related aids: Virtual cubarythms and 3D drawings. IEEE Global Engineering Education Conference (EDUCON), pp 995–998

  15. Minatani K et al (2010) Tactile Map Automated Creation System to Enhance the Mobility of Blind Persons: Its Design Concept and Evaluation through Experiment. Proceedings of the 12th international conference on Computers helping people with special needs, Vienna, Austria, pp 534–540

  16. Neumüller M, Reichinger A (2013) From stereoscopy to tactile photography. PhotoResearcher 19:59–63

    Google Scholar 

  17. Reichinger A, Neumüller M, Rist F, Maierhofer S, Purgathofer W (2012) Computer-Aided Design of Tactile Models. In: Proceedings of the 13th International Conference on Computers Helping People with Special Need. Springer, Heidelberg, pp 497–504

    Chapter  Google Scholar 

  18. Schmitz M, Khalilbeigi M, Balwierz M, Lissermann R, Mühlhäuser M, Steimle J (2015) Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST’15), pp 253–258

  19. Schweikhardt W (1985) Interaktives Erkunden tastbarer Grafiken durch Blinde. Software-Ergonomie’85, Mensch-Computer-Interaktion, Tagung III/1985 des German Chapter of the ACM, S 366–375

  20. Shi L (2015) Talkabel: A Labeling Method for 3D Printed Models. Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp 361–362

  21. Shi L, Zelzer I, Feng C, Azenkot S (2016) Tickers and Talker: An Accessible Labeling Toolkit for 3D Printed Models. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp 4896–4907

  22. Stangl A, Kim J, Yeh T (2014) 3D printed tactile picture books for children with visual impairments: a design probe. Proceedings of the 2014 conference on Interaction design and children (IDC’14), pp 321–324

  23. Swaminathan S, Roumen T, Kovacs R, Stangl D, Mueller S, Baudisch P (2016) Linespace: A Sensemaking Platform for the Blind. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp 2175–2185

  24. Taylor B, Dey A, Siewiorek D, Smailagic S (2016) Customizable 3D Printed Tactile Maps as Interactive Overlays. Proceedings of 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’16), pp 71–79

  25. The Braille Authority of North America (Hrsg) (2010) Guidelines and Standards for Tactile Graphics. Braille Authority of North America

  26. Voigt A, Martens B (2006) Development of 3D Tactile Models for the Partially Sighted to Facilitate Spatial Orientation. Proceedings of the 24th Conference on Education and Research in Computer Aided Architectural Design in Europe, pp 366–370

  27. World Health Organization (WHO) (2016) Visual Impairment and Blindness. http://www.who.int/mediacentre/factsheets/fs282/en/, last access: 14.12.2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Götzelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götzelmann, T. 3D-Druck für blinde Menschen. Informatik Spektrum 40, 511–515 (2017). https://doi.org/10.1007/s00287-017-1068-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-017-1068-8

Navigation