Algorithmic Economics und Operations Research

Zusammenfassung

Die Informatik hat viele Wissenschaften grundlegend beeinflusst, die Wirtschaftswissenschaften in besonders hohem Maße. Vor allem die enormen Fortschritte der Algorithmik und der mathematischen Optimierung haben großen Einfluss auf Theorie und Praxis. Neben traditionellen Anwendungen des Operations Research in der Ablauf- oder Tourenplanung ermöglichen diese Fortschritte völlig neue Anwendungen, und sie spielen für Geschäftsmodelle der digitalen Wirtschaft eine wichtige Rolle. Die Schnittstelle zwischen Informatik, Mathematik und Wirtschaftswissenschaften hat sich im Münchner Umfeld von Universitäten und Industrie in den vergangenen Jahren sehr dynamisch entwickelt. Der vorliegende Artikel gibt verschiedene Beispiele, wie Algorithmen und neue Ansätze der Optimierung sowohl betriebswirtschaftliche Probleme lösen (erster Teil) als auch Entwicklungen der wirtschaftswissenschaftlichen Theorie beeinflussen (zweiter Teil). Sie zeugen von einer neuen, einer ,,informatischen“ Art, wirtschaftliche Prozesse zu gestalten und zu erklären, die auch international großen Auftrieb erhält.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Albers S (2009) On the value of coordination in network design. SIAM J Comput 38(6):2273–2302

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Albers S, Eilts S, Even-Dar E, Mansour Y, Roditty L (2014) On Nash equilibria for a network creation game. ACM T Econ Comput 2(1):2

    MATH  Google Scholar 

  3. 3.

    Albers S, Lenzner P (2013) On approximate Nash equilibria in network design. Internet Math 9(4):384–405

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Alpers A, Brieden A, Gritzmann P, Lyckegaard A, Poulsen HF (2015) Generalized balanced power diagrams for 3D representations of polycrystals. Philos Mag 95:1016–1028

    Article  Google Scholar 

  5. 5.

    Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T, Roughgarden T (2008) The price of stability for network design with fair cost allocation. SIAM J Comput 38(4):1602–1623

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Anshelevich E, Dasgupta A, Tardos É, Wexler T (2008) Near-optimal network design with selfish agents. Theor Comput 4(1):77–109

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Aziz H, Brandt F, Elkind E, Skowron P (2017) Computational social choice: The first ten years and beyond. In: Steffen B, Woeginger G (eds) Computer Science Today, vol 10000, Lecture Notes in Computer Science (LNCS). Springer

  8. 8.

    Bichler M, Goeree J (eds) (2017) Handbook of Spectrum Auction Design. Cambridge University Press

  9. 9.

    Bikhchandani S, Ostroy JM (2002) The package assignment model. J Econ Theor 107(2):377–406

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Bixby RE (2012) A brief history of linear and mixed-integer programming computation. Documenta Mathematica pp 107–121

  11. 11.

    Borgwardt S, Brieden A, Gritzmann P (2014) Geometric clustering for the consolidation of farmland and woodland. Math Intell 36:37–44

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Brandl F, Brandt F, Geist C (2016) Proving the incompatibility of efficiency and strategyproofness via SMT solving. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, pp 116–122

  13. 13.

    Brandl F, Brandt F, Seedig HG (2016) Consistent probabilistic social choice. Econometrica 84(5):1839–1880

    MathSciNet  Article  Google Scholar 

  14. 14.

    Brandt F, Conitzer V, Endriss U, Lang J, Procaccia A (eds) (2016) Handbook of Computational Social Choice. Cambridge University Press

  15. 15.

    Brandt F, Geist C (2016) Finding strategyproof social choice functions via SAT solving. J Artif Intell Res 55:565–602

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Brieden A, Gritzmann P, Klemm F (2017) Electoral district design via constrained clustering. Eur J Oper Res (in revision)

  17. 17.

    Carlsson JG, Carlsson E, Devulapalli R (2014) Balancing workloads of service vehicles over a geographic territory. In: IEEE/RSJ Intern. Conf. Intelligent Robots and Systems, pp 209–216

  18. 18.

    Conway RW, Maxwell WL, Miller LW (1967) Theory of Scheduling. Addison-Wesley

  19. 19.

    Cortes J (2010) Coverage optimization and spatial load balancing by robotic sensor networks. IEEE T Autom Control 55:749–754

    MathSciNet  Article  Google Scholar 

  20. 20.

    Diebold F, Bichler M (2017) Matching with indifferences: a comparison of algorithms in the context of course allocation. Eur J Oper Res 260(1):268–282

    MathSciNet  Article  Google Scholar 

  21. 21.

    Fabrikant A, Luthra A, Maneva E, Papadimitriou C, Shenker S (2003) On a network creation game. In: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing (PODC). ACM Press, pp 347–351

  22. 22.

    Fadaei S, Bichler M (2017) Generalized assignment problem: truthful mechanism design without money. Oper Res Lett 45:72–76

    MathSciNet  Article  Google Scholar 

  23. 23.

    Frey M, Kolisch R, Artigues C (2017) Column generation for outbound baggage handling at airports. Transport Sci (accepted)

  24. 24.

    Goetzendorff A, Bichler M, Shabalin P, Day RW (2015) Compact bid languages and core pricing in large multi-item auctions. Manage Sci 61(7):1684–1703

    Article  Google Scholar 

  25. 25.

    Gritzmann P, Klee V (2017) Computational convexity. In: Handbook of Discrete and Computational Geometry, chapt 37, 3rd edn. Chapman & Hall/CRC

  26. 26.

    Nisan N, Roughgarden T, Tardos E, Vazirani V (2007) Algorithmic Game Theory. Cambridge University Press, Cambridge

    Google Scholar 

  27. 27.

    Petrakis I, Ziegler G, Bichler M (2012) Ascending combinatorial auctions with allocation constraints: on game theoretical and computational properties of generic pricing rules. Inform Syst Res 24(3):768–786

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Bichler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albers, S., Bichler, M., Brandt, F. et al. Algorithmic Economics und Operations Research. Informatik Spektrum 40, 165–171 (2017). https://doi.org/10.1007/s00287-017-1023-8

Download citation