Advertisement

Informatik-Spektrum

, Volume 38, Issue 6, pp 533–542 | Cite as

Formale Logiken für unscharfe Mengen

  • Siegfried GottwaldEmail author
HAUPTBEITRAG FORMALE LOGIKEN FÜR UNSCHARFE MENGEN
  • 109 Downloads

Zusammenfassung

Wie für jede mathematische Theorie nutzt man auch für die systematische Darstellung der Theorie der unscharfen Mengen vorteilhaft den Rahmen einer formalen Logik. In diesem Falle bietet es deutliche Vorteile, dabei auf mehrwertige Logiken Bezug zu nehmen.

Hier werden die grundlegenden Ideen und Hauptlinien der technischen Entwicklungen des vergangenen halben Jahrhunderts skizziert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Běhounek B, Haniková Z (2015) Set theory and arithmetic in fuzzy logic. In: F. Montagna (ed) Petr Hájek on Mathematical Fuzzy Logic, vol 6 of Outstanding Contributions to Logic, Springer Internat, Switzerland, pp 63–89Google Scholar
  2. 2.
    Bělohlávek R, Vychodil V (2005) Fuzzy Equational Logic, vol 186 of Studies in Fuzzyness and Soft Computing, Springer, BerlinGoogle Scholar
  3. 3.
    Cignoli R, Esteva F, Godo L, Torrens A (2000) Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput 4:106–112CrossRefGoogle Scholar
  4. 4.
    Cintula P, Hájek P (2010) Triangular norm based predicate fuzzy logics. Fuzzy Set Syst 161:311–346zbMATHCrossRefGoogle Scholar
  5. 5.
    Cintula R, Hájek P, Noguera C (eds) (2011) Handbook of Mathematical Fuzzy Logic, vol 37–38 of Studies in Logic, College Publications, LondonGoogle Scholar
  6. 6.
    Esteva F, Godo L (2001) Monoidal t-norm based logic: toward a logic for left-continuous t-norms. Fuzzy Set Syst 124:271–288zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Esteva F, Godo L, Gottwald S, and Montagna F (2015) Introduction. In: Montagna F (ed) Petr Hájek on Mathematical Fuzzy Logic, vol 6 of Outstanding Contributions to Logic. Springer Internat, Switzerland, pp 3–20Google Scholar
  8. 8.
    Esteva F, Godo L, and Montagna F (2004) Equational characterization of the subvarieties of BL generated by t-norm algebras. Studia Logica 76:161–200zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics, vol 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Gerla G (2001) Fuzzy Logic. Mathematical Tools for Approximate Reasoning, vol 11 of Trends in Logic. Kluwer Academic PublishersGoogle Scholar
  11. 11.
    Goguen JA (1968–69) The logic of inexact concepts. Synthese 19:325–373Google Scholar
  12. 12.
    Gottwald S (1989) Mehrwertige Logik. Logica Nova. Akademie-Verlag, BerlinGoogle Scholar
  13. 13.
    Gottwald S (2001) A Treatise on Many-Valued Logics, vol 9 of Studies in Logic and Computation. Research Studies Press, BaldockGoogle Scholar
  14. 14.
    Gottwald S (2008) Mathematical fuzzy logics. B Symb Log 14:210–239zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gottwald S and Hájek P (2005) T-norm based mathematical fuzzy logics. In: Klement EP, Mesiar R (eds) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Dordrecht, pp 275–299CrossRefGoogle Scholar
  16. 16.
    Hájek P (1998) Metamathematics of Fuzzy Logic. Trends in Logic. 4. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
  17. 17.
    Hájek P (2001) On very true. Fuzzy Set Syst 124:329–333zbMATHCrossRefGoogle Scholar
  18. 18.
    Hájek P, Godo L, Esteva F (1995) Fuzzy logic and probability. In: Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence UAI ’95, Montreal, pp 237–244Google Scholar
  19. 19.
    Hájek P, Godo L, Esteva F (1996) A complete many-valued logic with product-conjunction. Arch Math Logic 35:191–208zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hájek P, Novák V (2003) The sorites paradox and fuzzy logic. Int J Gen Syst 32:373–383zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Höhle U (1994) Monoidal logic. In: Kruse R, Gebhardt J, Palm R (eds) Fuzzy Systems in Computer Science, Artificial Intelligence. Verlag Vieweg, Wiesbaden, pp 233–243CrossRefGoogle Scholar
  22. 22.
    Höhle U (1996) On the fundamentals of fuzzy set theory. J Math Anal Appl 201:786–826zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Jenei S, Montagna F (2002) A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70:183–192zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Klaua D (1965) Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsber Deutsch Akad Wiss Berlin 7:859–867zbMATHMathSciNetGoogle Scholar
  25. 25.
    Klaua D (1966) Über einen zweiten Ansatz zur mehrwertigen Mengenlehre. Monatsber Deutsch Akad Wiss Berlin 8:161–177zbMATHMathSciNetGoogle Scholar
  26. 26.
    Klement EP, Mesiar R, Pap E (2000) Triangular Norms. Kluwer Academic Publishers, DordrechtzbMATHCrossRefGoogle Scholar
  27. 27.
    Metcalfe G (2011) Proof theory for mathematical fuzzy logic. In: Cintula P, Hájek P, Noguera C (eds) Handbook of Mathematical Fuzzy Logic, vol. 1, vol 37 of Studies in Logic, chapter 3. College Publ., London, pp 209–282Google Scholar
  28. 28.
    Metcalfe G, Olivetti N, Gabbay D (2009) Proof Theory for Fuzzy Logics, vol 36 of Applied Logic Series. Springer, New YorkGoogle Scholar
  29. 29.
    Novák V (2005) On fuzzy type theory. Fuzzy Set Syst 149(2):235–273zbMATHCrossRefGoogle Scholar
  30. 30.
    Novák V (2007) Mathematical fuzzy logic in modeling of natural language semantics. In: Fuzzy Logic, vol 215 of Stud. Fuzziness Soft Comput. Springer, Berlin, pp 135–172Google Scholar
  31. 31.
    Novák V (2008) A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Set Syst 159(22):2939–2969zbMATHCrossRefGoogle Scholar
  32. 32.
    Novák V, Perfilieva I, Mockor J (1999) Mathematical Principles of Fuzzy Logic. Kluwer Acad. Publ., Boston/Dordrecht/LondonzbMATHCrossRefGoogle Scholar
  33. 33.
    Pavelka J (1979) On fuzzy logic. I–III. Zeitschr math Logik 25:45–52; 119–134; 447–464zbMATHMathSciNetGoogle Scholar
  34. 34.
    Ruitenburg W (1998) Basic predicate calculus. Notre Dame J Formal Logic 39:18–46zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Schweizer B, Sklar A (1983) Probabilistic Metric Spaces. North-Holland Publ. Comp., AmsterdamzbMATHGoogle Scholar
  36. 36.
    Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Zadeh LA (1968) Probability measures for fuzzy events. J Math Anal Appl 23:421–427zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst 1:3–28zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Abteilung Logik und Wissenschaftstheorie am Institut für PhilosophieUniversität LeipzigLeipzigDeutschland

Personalised recommendations