SESAME-S: Semantic Smart Home System for Energy Efficiency

Abstract

As the urgent need for efficient and sustainable energy usage becomes ever more apparent, interest in Smart Homes is on the rise. The SESAME-S project (SEmantic SmArt Metering – Services for Energy Efficient Houses) uses semantically linked data to actively assist end-consumers in making well-informed decisions and controlling their energy consumption. By integrating smart metering and home automation functionality, SESAME-S works to effectively address the potential mass market of end-consumers with an easily customizable solution that can be widely implemented in domestic or business environments, with expected savings of over 20 % from the total energy bill. The developed system is a basis for conceptualizing, demonstrating, and evaluating a variety of innovative end-consumer services and their user interface paradigms. In this paper, we present the SESAME-S system as a whole and discuss the semantically enabled services, demonstrating that such systems may have broad acceptance in the future. The data obtained through such systems will be invaluable for future global energy-efficiency strategies and businesses.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Apple Reveals Smart-Home Energy Management Dashboard System (2010) http://www.patentlyapple.com/patently-apple/2010/01/apple-reveals-smart-home-energy-management-dashboard-system-1.html, last access 13.12.2012

  2. 2.

    Device Language Message Specification User Association (2009) http://www.dlms.com, last access 13.12.2012

  3. 3.

    Energy Roadmap 2050, European Union (2012) http://ec.europa.eu/energy/publications/doc/2012_energy_roadmap_2050_en.pdf, last access 13.12.2012

  4. 4.

    EU climate and energy “20-20-20” package. http://ec.europa.eu/clima/policies/brief/eu/package_en.htm, last access 13.12.2012

  5. 5.

    Friedman-Hill E (2003) Jess in Action: Java Rule-based Systems, ISBN 1930110898, Manning Publications Company, http://herzberg.ca.sandia.gov/jess/, last access 13.12.2012

  6. 6.

    Hall K, Puglise F, Sawhney S, Michaud P (2005) “The next generation of energy trading”, IBM Business Consulting Services, white paper. http://www-304.ibm.com/easyaccess/fileserve?contentid=77765, last access 13.12.2012

  7. 7.

    Schulz S (2012) “Smarthome-Konzepte: Schalt die Heizung mit dem Handy aus”, Spiegel, http://www.spiegel.de/wirtschaft/unternehmen/0,1518,667932,00.html, last access 13.12.2012

  8. 8.

    The SESAME-S Project (2011) http://sesame-s.ftw.at/, last access 13.12.2012

  9. 9.

    Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Sci Am 284(5):34–43

    Article  Google Scholar 

  10. 10.

    Bonino D, Castellina E, Corno F (2008) DOG: An Ontology-Powered OSGi Domotic Gateway. In: ICTAI ’08: 20th IEEE International Conference on Tools with Artificial Intelligence, vol 1, pp 157–160

  11. 11.

    Gray AJG, Garcia-Castro R, Kyzirakos K, Karpathiotakis M, Calbimonte J-P, Page KR, Sadler J, Frazer A, Galpin I, Fernandes AAA, Paton NW, Corcho Ó, Koubarakis M, De Roure D, Martinez K, Gómez-Pérez A (2011) A Semantically Enabled Service Architecture for Mashups over Streaming and Stored Data. In: Proc. of 8th Extended Semantic Web Conference, ESWC 2011, May 29–June 2, 2011, Part II. LNCS, vol 6644, Springer, pp 300–314

  12. 12.

    Kumar V, Tomic S, Pellegrini T, Fensel A, Mayrhofer R (2010) User Created Machine-Readable Policies for Energy Efficiency in Smart Homes. In: Proc. of the Ubiquitous Computing for Sustainable Energy (UCSE2010) Workshop at the 12th ACM International Conference on Ubiquitous Computing (UbiComp’10)

  13. 13.

    Saaty L, Vargas LG (2000) Models, Methods, Concepts and Applications of the Analytic Hierarchy Process (with L.G. Vargas), Kluwer Academic Publishers, Boston

  14. 14.

    Schwanzer M, Fensel A (2010) Energy Consumption Information Services for Smart Home Inhabitants. In: Proc of 3rd Future Internet Symposium (FIS’10), 20–22 September, Berlin, Germany, LNCS vol 6369, Springer, pp 78–87

  15. 15.

    Singhal A (2012) Introducing the Knowledge Graph: Things, Not String. Official Blog (of Google). Retrieved May 18, 2012

  16. 16.

    Tomic S, Fensel A, Schwanzer M, Kojic Veljovic M, Stefanovic M (2011) Semantics for Energy Efficiency in Smart Home Environments. In: Sugumaran V, Gulla JA (eds) Applied Semantic Technologies: Using Semantics in Intelligent Information Processing, Taylor and Francis

  17. 17.

    Zapico JL, Guath M, Turpeinen M (2011) Kilograms or cups of tea: Comparing footprints for better CO2 Understanding. PsychNology J 9(1):43–54

    Google Scholar 

  18. 18.

    Zeiss J, Gabner R, Zhdanova AV, Bessler S (2008) A Semantic Policy Management Environment For End-Users. In: Proc of International Conference on Semantic Systems (I-SEMANTICS’08), 3–5 September, Graz, Austria, JUCS, pp 67–75

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Fensel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fensel, A., Tomic, S., Kumar, V. et al. SESAME-S: Semantic Smart Home System for Energy Efficiency. Informatik Spektrum 36, 46–57 (2013). https://doi.org/10.1007/s00287-012-0665-9

Download citation

Keywords

  • Smart Home
  • Semantic Technology
  • Real Building
  • Smart Home System
  • Automation Rule